Bessaga's conjecture in unstable Köthe spaces and products
Studia Mathematica (1993)
- Volume: 104, Issue: 3, page 221-228
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Ahonen, On nuclear spaces defined by Dragilev functions, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 38 (1981), 1-57. Zbl0483.46009
- [2] C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318. Zbl0182.45301
- [3] L. Crone and W. B. Robinson, Every nuclear Fréchet space with a regular basis has the quasi-equivalence property, ibid. 52 (1975), 203-207. Zbl0297.46008
- [4] M. M. Dragilev, On special dimensions defined on some classes of Köthe spaces, Math. USSR-Sb. 9 (2) (1968), 213-228.
- [5] M. M. Dragilev, On regular bases in nuclear spaces, Amer. Math. Soc. Transl. (2) 93 (1970), 61-82.
- [6] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin 1979. Zbl0403.46005
- [7] M. Hall, Jr., Combinatorial Theory, Blaisdell-Waltham, 1967.
- [8] V. P. Kondakov, On a certain generalization of power series spaces, in: Current Problems in Mathematical Analysis, Rostov State Univ., 1978, 92-99 (in Russian).
- [9] V. P. Kondakov, Properties of bases of some Köthe spaces and their subspaces, in: Functional Analysis and its Applications 14, Rostov State Univ., 1980, 58-59 (in Russian).
- [10] V. P. Kondakov, Unconditional bases in certain Köthe spaces, Sibirsk. Mat. Zh. 25 (3) (1984), 109-119 (in Russian). Zbl0589.46006
- [11] G. Köthe, Topologische lineare Räume I, Springer, Berlin 1960. Zbl0093.11901
- [12] J. Krone, Bases in the range of operators between Köthe spaces, Doğa Tr. J. Math. 10 (1986), 162-166 (special issue). Zbl0970.46518
- [13] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (4) (1961), 73-132 (in Russian). Zbl0104.08601
- [14] B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian).
- [15] Z. Nurlu, On pairs of Köthe spaces between which all operators are compact, Math. Nachr. 122 (1985), 272-287. Zbl0612.46009
- [16] A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin 1972.
- [17] J. Prada, On idempotent operators on Fréchet spaces, Arch. Math. (Basel) 43 (1984), 179-182. Zbl0537.46005
- [18] J. Sarsour, Bessaga's conjecture and quasi-equivalence property in unstable Köthe spaces, Ph.D. Thesis, METU, Ankara 1991. Zbl0812.46004
- [19] T. Terzioğlu, Unstable Köthe spaces and the functor Ext, Doğa Tr. J. Math. 10 (1986), 227-231 (special issue). Zbl0970.46523
- [20] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301. Zbl0512.46003