Commutators based on the Calderón reproducing formula

Krzysztof Nowak

Studia Mathematica (1993)

  • Volume: 104, Issue: 3, page 285-306
  • ISSN: 0039-3223

Abstract

top
We prove the Schatten-Lorentz ideal criteria for commutators of multiplications and projections based on the Calderón reproducing formula and the decomposition theorem for the space of symbols corresponding to commutators in the Schatten ideal.

How to cite

top

Nowak, Krzysztof. "Commutators based on the Calderón reproducing formula." Studia Mathematica 104.3 (1993): 285-306. <http://eudml.org/doc/215977>.

@article{Nowak1993,
abstract = {We prove the Schatten-Lorentz ideal criteria for commutators of multiplications and projections based on the Calderón reproducing formula and the decomposition theorem for the space of symbols corresponding to commutators in the Schatten ideal.},
author = {Nowak, Krzysztof},
journal = {Studia Mathematica},
keywords = {Schatten-Lorentz ideal; wavelet; Hankel operator; Schatten-Lorentz ideal criteria; commutators of multiplications; Calderón reproducing formula; decomposition theorem; space of symbols corresponding to commutators in the Schatten ideal},
language = {eng},
number = {3},
pages = {285-306},
title = {Commutators based on the Calderón reproducing formula},
url = {http://eudml.org/doc/215977},
volume = {104},
year = {1993},
}

TY - JOUR
AU - Nowak, Krzysztof
TI - Commutators based on the Calderón reproducing formula
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 3
SP - 285
EP - 306
AB - We prove the Schatten-Lorentz ideal criteria for commutators of multiplications and projections based on the Calderón reproducing formula and the decomposition theorem for the space of symbols corresponding to commutators in the Schatten ideal.
LA - eng
KW - Schatten-Lorentz ideal; wavelet; Hankel operator; Schatten-Lorentz ideal criteria; commutators of multiplications; Calderón reproducing formula; decomposition theorem; space of symbols corresponding to commutators in the Schatten ideal
UR - http://eudml.org/doc/215977
ER -

References

top
  1. [A] J. Arazy, Some remarks on interpolation theorems and the boundedness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), 453-495. Zbl0395.47030
  2. [AFP] J. Arazy, S. Fisher and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1055. Zbl0669.47017
  3. [Ax] S. Axler, Bergman spaces and their operators, in: Surveys of Some Recent Results in Operator Theory, J. B. Conway and B. B. Morrel (eds.), Pitman Res. Notes in Math. 171, Longman, 1988, 1-50. 
  4. [B] A. F. Beardon, The Geometry of Discrete Groups, Springer, New York 1983. Zbl0528.30001
  5. [BBCZ] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350. Zbl0765.32005
  6. [BL] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin 1976. Zbl0344.46071
  7. [Bu] H. Q. Bui, Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz, Hiroshima Math. J. 9 (1979), 245-295. Zbl0403.31003
  8. [CR] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L p , Astérisque 77 (1980), 12-66. Zbl0472.46040
  9. [E] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. Zbl0169.46403
  10. [F] H. G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, in: Proc. Conference on Function Spaces, Edwardsville, Illinois, April 1990, Lecture Notes in Pure and Appl. Math., Marcel Dekker, to appear. Zbl0833.46030
  11. [FG] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal. 86 (1989), 307-340. Zbl0691.46011
  12. [FR] M. Feldman and R. Rochberg, Singular value estimates for commutators and Hankel operators on the unit ball and the Heisenberg group, in: Analysis and Partial Differential Equations, Cora Sadosky (ed.), Marcel Dekker, New York 1990, 121-159. 
  13. [FS] J. J. F. Fournier and J. Stewart, Amalgams of L p and l q , Bull. Amer. Math. Soc. 13 (1985), 1-21. 
  14. [FJ1] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. Zbl0551.46018
  15. [FJ2] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. Zbl0716.46031
  16. [FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, R.I., 1991. Zbl0757.42006
  17. [GK] I. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators, Transl. Math. Monographs, Amer. Math. Soc., Providence, R.I., 1969. 
  18. [GMP] A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations II: examples, Ann. Inst. Henri Poincaré 45 (1986), 293-309. Zbl0601.22001
  19. [H] S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, Fla., 1984. Zbl0543.58001
  20. [J] S. Janson, Hankel operators between weighted Bergman spaces, Ark. Mat. 26 (1988), 205-219. Zbl0676.47013
  21. [Lu] D. H. Luecking, Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk, preprint, 1991. 
  22. [Mc] C. A. McCarthy, c p , Israel J. Math. 5 (1967), 249-271. 
  23. [M] Y. Meyer, Ondelettes et Opérateurs I, II, III, Hermann, Paris 1990. 
  24. [N] K. Nowak, Weak type estimate for singular values of commutators on weighted Bergman spaces, Indiana Univ. Math. J., to appear. Zbl0777.47023
  25. [Pe] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Dept. Math., Duke Univ., Durham, N.C., 1976. 
  26. [RT] F. Ricci and M. Taibleson, Boundary values of harmonic functions in mixed norm spaces and their atomic structure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 1-54. Zbl0527.30040
  27. [R1] R. Rochberg, Toeplitz and Hankel operators, wavelets, NWO sequences, and almost diagonalization of operators, in: Proc. Sympos. Pure Math. 51, W. B. Arveson and R. G. Douglas (eds.), Amer. Math. Soc., 1990, 425-444. 
  28. [R2] R. Rochberg, Decomposition theorems for Bergman spaces and their applications, in: Operators and Function Theory, S. C. Power (ed.), Reidel, Dordrecht 1985, 225-278. 
  29. [RS1] R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular values estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306. Zbl0699.47012
  30. [RS2] R. Rochberg and S. Semmes, End point results for estimates of singular values of integral operators, in: Contributions to Operator Theory and its Applications, Oper. Theory: Adv. Appl. 35, I. Gohberg et al. (eds.), Birkhäuser, Boston 1988, 217-231. 
  31. [Se] S. Semmes, Trace ideal criteria for Hankel operators, and applications to Besov spaces, Integral Equations Operator Theory 7 (1984), 241-281. Zbl0541.47023
  32. [Si] B. Simon, Trace Ideals and Their Applications, Cambridge Univ. Press, London 1979. 
  33. [Str] K. Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990), 159-174. Zbl0687.47019
  34. [T] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, Springer, New York 1985. Zbl0574.10029
  35. [Tr] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel 1983. 
  36. [Z1] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York 1990. 
  37. [Z2] K. Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math. Soc. 302 (1987), 617-646. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.