Boundary values of harmonic functions in mixed norm spaces and their atomic structure

Fulvio Ricci; Mitchell Taibleson

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 1, page 1-54
  • ISSN: 0391-173X

How to cite

top

Ricci, Fulvio, and Taibleson, Mitchell. "Boundary values of harmonic functions in mixed norm spaces and their atomic structure." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.1 (1983): 1-54. <http://eudml.org/doc/83899>.

@article{Ricci1983,
author = {Ricci, Fulvio, Taibleson, Mitchell},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {mean oscillation; Besov Lipschitz spaces; spaces of harmonic functions; Bergman type reproducing kernels},
language = {eng},
number = {1},
pages = {1-54},
publisher = {Scuola normale superiore},
title = {Boundary values of harmonic functions in mixed norm spaces and their atomic structure},
url = {http://eudml.org/doc/83899},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Ricci, Fulvio
AU - Taibleson, Mitchell
TI - Boundary values of harmonic functions in mixed norm spaces and their atomic structure
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 1
SP - 1
EP - 54
LA - eng
KW - mean oscillation; Besov Lipschitz spaces; spaces of harmonic functions; Bergman type reproducing kernels
UR - http://eudml.org/doc/83899
ER -

References

top
  1. [1] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa, (3) 17 (1963), pp. 175-188. Zbl0121.29201MR156188
  2. [2] R.R. Coifman, A real variable characterization of HP, Studia Math., 51 (1974),. pp. 269-274. Zbl0289.46037MR358318
  3. [3] R.R. Coifman - R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque, 77 (1980), pp. 12-66. Zbl0472.46040MR604369
  4. [4] R.R. Coifman - G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), pp. 569-645. Zbl0358.30023MR447954
  5. [5] C. Fefferman - E.M. Stein, HP spaces of several variables, Acta Math., 129 (1972), pp. 137-193. Zbl0257.46078MR447953
  6. [6] T.M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc., 20 (1970), pp. 749-768. Zbl0211.39203MR268388
  7. [7] C.S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18 (1968), pp. 283-324. Zbl0177.15701MR438109
  8. [8] F. John - L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), pp. 415-426. Zbl0102.04302MR131498
  9. [9] R. Johnson, Temperatures, Riesz potentials, and the Lipschitz spaces of Herz, Proc. London Math. Soc., 27 (1973), pp. 290-316. Zbl0262.46037MR374895
  10. [10] R. Latter, A characterization of HP(Rn) in terms of atoms, Studia Math., 62 (1978), pp. 93-101. Zbl0398.42017MR482111
  11. [11] B.H. Qui, Hermonic functions, Riesz potentials and the Lipschitz spaces of Herz,, Hiroshima Math. J., 9 (1979), pp. 245-295. Zbl0403.31003MR529335
  12. [12] E.M. Stein - G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971. Zbl0232.42007MR304972
  13. [13] M. Stoll, Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains, J. Reine Angew. Math., 290 (1977), pp. 191-198. Zbl0342.32003MR437812
  14. [14] M. Taibleson - G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque77 (1980), pp. 68-149. Zbl0472.46041MR604370

NotesEmbed ?

top

You must be logged in to post comments.