Some estimates concerning the Zeeman effect

Wiesław Cupała

Studia Mathematica (1993)

  • Volume: 105, Issue: 1, page 13-23
  • ISSN: 0039-3223

Abstract

top
The Itô integral calculus and analysis on nilpotent Lie grops are used to estimate the number of eigenvalues of the Schrödinger operator for a quantum system with a polynomial magnetic vector potential. An analogue of the Cwikel-Lieb-Rosenblum inequality is proved.

How to cite

top

Cupała, Wiesław. "Some estimates concerning the Zeeman effect." Studia Mathematica 105.1 (1993): 13-23. <http://eudml.org/doc/215979>.

@article{Cupała1993,
abstract = {The Itô integral calculus and analysis on nilpotent Lie grops are used to estimate the number of eigenvalues of the Schrödinger operator for a quantum system with a polynomial magnetic vector potential. An analogue of the Cwikel-Lieb-Rosenblum inequality is proved.},
author = {Cupała, Wiesław},
journal = {Studia Mathematica},
keywords = {estimation of eigenvalues; Schrödinger operator; Schrödinger operators with polynomial potentials; Itô integral calculus; Cwikel-Lieb-Rosenblum inequality},
language = {eng},
number = {1},
pages = {13-23},
title = {Some estimates concerning the Zeeman effect},
url = {http://eudml.org/doc/215979},
volume = {105},
year = {1993},
}

TY - JOUR
AU - Cupała, Wiesław
TI - Some estimates concerning the Zeeman effect
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 1
SP - 13
EP - 23
AB - The Itô integral calculus and analysis on nilpotent Lie grops are used to estimate the number of eigenvalues of the Schrödinger operator for a quantum system with a polynomial magnetic vector potential. An analogue of the Cwikel-Lieb-Rosenblum inequality is proved.
LA - eng
KW - estimation of eigenvalues; Schrödinger operator; Schrödinger operators with polynomial potentials; Itô integral calculus; Cwikel-Lieb-Rosenblum inequality
UR - http://eudml.org/doc/215979
ER -

References

top
  1. [1] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York 1974. Zbl0278.60039
  2. [2] N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris 1971. Zbl0213.04103
  3. [3] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. 106 (1977), 93-100. Zbl0362.47006
  4. [4] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. Zbl0312.35026
  5. [5] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, unpublished. Zbl0445.58029
  6. [6] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216. Zbl0008.11301
  7. [7] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, 1978. Zbl0401.47001
  8. [8] G. W. Rosenblum, The distribution of the discrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012-1015 (in Russian). 
  9. [9] B. Simon, Schrödinger operators with singular magnetic vector potentials, Math. Z. 131 (1973), 361-370. Zbl0277.47006
  10. [10] B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979. Zbl0434.28013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.