Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace

M. Ostrovskiĭ

Studia Mathematica (1993)

  • Volume: 105, Issue: 1, page 37-49
  • ISSN: 0039-3223

Abstract

top
The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.

How to cite

top

Ostrovskiĭ, M.. "Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace." Studia Mathematica 105.1 (1993): 37-49. <http://eudml.org/doc/215982>.

@article{Ostrovskiĭ1993,
abstract = {The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.},
author = {Ostrovskiĭ, M.},
journal = {Studia Mathematica},
keywords = {dual of a separable Banach space; nonquasireflexive quotient space; strictly singular quotient mapping},
language = {eng},
number = {1},
pages = {37-49},
title = {Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace},
url = {http://eudml.org/doc/215982},
volume = {105},
year = {1993},
}

TY - JOUR
AU - Ostrovskiĭ, M.
TI - Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 1
SP - 37
EP - 49
AB - The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.
LA - eng
KW - dual of a separable Banach space; nonquasireflexive quotient space; strictly singular quotient mapping
UR - http://eudml.org/doc/215982
ER -

References

top
  1. [Al] A. A. Albanese, On total subspaces in duals of spaces of type C(K) or L 1 , preprint. 
  2. [An] A. Andrew, James' quasi-reflexive space is not isomorphic to any subspace of its dual, Israel J. Math. 38 (1981), 276-282. Zbl0461.46011
  3. [B] S. Banach, Théorie des opérations linéaires, Monografje Mat. 1, Warszawa 1932. 
  4. [BDH] E. Behrends, S. Dierolf and P. Harmand, On a problem of Bellenot and Dubinsky, Math. Ann. 275 (1986), 337-339. Zbl0586.46001
  5. [CY] P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911. Zbl0080.31204
  6. [DJ] W. J. Davis and W. B. Johnson, Basic sequences and norming subspaces in non-quasi-reflexive Banach spaces, Israel J. Math. 14 (1973), 353-367. Zbl0273.46009
  7. [DL] W. J. Davis and J. Lindenstrauss, On total nonnorming subspaces, Proc. Amer. Math. Soc. 31 (1972), 109-111. Zbl0256.46025
  8. [DM] S. Dierolf and V. B. Moscatelli, A note on quojections, Funct. Approx. Comment. Math. 17 (1987), 131-138. Zbl0617.46006
  9. [D] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057-1071. 
  10. [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York 1958. 
  11. [F] R. J. Fleming, Weak*-sequential closures and the characteristic of subspaces of conjugate Banach spaces, Studia Math. 26 (1966), 307-313. Zbl0163.36203
  12. [G] B. V. Godun, On weak* derived sets of sets of linear functionals, Mat. Zametki 23 (1978), 607-616 (in Russian). Zbl0403.46017
  13. [GR] B. V. Godun and S. A. Rakov, Banach-Saks property and the three space problem, ibid. 31 (1982), 61-74 (in Russian). 
  14. [Gu] V. I. Gurariǐ, On openings and inclinations of subspaces of a Banach space, Teor. Funktsiǐ Funktsional. Anal. i Prilozhen. 1 (1965), 194-204 (in Russian). 
  15. [HW] R. Herman and R. Whitley, An example concerning reflexivity, Studia Math. 28 (1967), 289-294. Zbl0148.37101
  16. [JR] W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, ibid. 43 (1972), 77-92. 
  17. [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin 1977. Zbl0362.46013
  18. [Ma] S. Mazurkiewicz, Sur la dérivée faible d'un ensemble de fonctionnelles linéaires, Studia Math. 2 (1930), 68-71. Zbl56.1024.02
  19. [Mc] O. C. McGehee, A proof of a statement of Banach about the weak* topology, Michigan Math. J. 15 (1968), 135-140. Zbl0164.43101
  20. [MM1] G. Metafune and V. B. Moscatelli, Generalized prequojections and bounded maps, Results in Math. 15 (1989), 172-178. Zbl0677.46001
  21. [MM2] G. Metafune and V. B. Moscatelli, Quojections and prequojections, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), Kluwer, Dordrecht 1989, 235-254. 
  22. [M1] V. B. Moscatelli, On strongly non-norming subspaces, Note Mat. 7 (1987), 311-314. Zbl0682.46009
  23. [M2] V. B. Moscatelli, Strongly nonnorming subspaces and prequojections, Studia Math. 95 (1990), 249-254. Zbl0725.46016
  24. [O1] M. I. Ostrovskiǐ, w*-derived sets of transfinite order of subspaces of dual Banach spaces, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1987 (10), 9-12 (in Russian). 
  25. [O2] M. I. Ostrovskiǐ, On total nonnorming subspaces of a conjugate Banach space, Teor. Funktsiǐ Funktsional. Anal. i Prilozhen. 53 (1990), 119-123 (in Russian); English transl.: J. Soviet Math. 58 (6) (1992), 577-579. 
  26. [O3] M. I. Ostrovskiǐ, Regularizability of superpositions of inverse linear operators, Teor. Funktsiǐ Funktsional. Anal. i Prilozhen. 55 (1991), 96-100 (in Russian); English transl.: J. Soviet Math. 59 (1) (1992), 652-655. 
  27. [Pe] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. Zbl0107.32504
  28. [P] Yu. I. Petunin, Conjugate Banach spaces containing subspaces of zero characteristic, Dokl. Akad. Nauk SSSR 154 (1964), 527-529 (in Russian); English transl.: Soviet Math. Dokl. 5 (1964), 131-133. 
  29. [PP] Yu. I. Petunin and A. N. Plichko, The Theory of Characteristic of Subspaces and its Applications, Vishcha Shkola, Kiev 1980 (in Russian). 
  30. [Pl] A. N. Plichko, On bounded biorthogonal systems in some function spaces, Studia Math. 84 (1986), 25-37. Zbl0622.46011
  31. [S1] D. Sarason, On the order of a simply connected domain, Michigan Math. J. 15 (1968), 129-133. 
  32. [S2] D. Sarason, A remark on the weak-star topology of l , Studia Math. 30 (1968), 355-359. 
  33. [Sc] J. J. Schäffer, Linear differential equations and functional analysis. VI, Math. Ann. 145 (1962), 354-400. Zbl0099.32501
  34. [W] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge University Press, 1991. Zbl0724.46012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.