Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace
Studia Mathematica (1993)
- Volume: 105, Issue: 1, page 37-49
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topOstrovskiĭ, M.. "Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace." Studia Mathematica 105.1 (1993): 37-49. <http://eudml.org/doc/215982>.
@article{Ostrovskiĭ1993,
abstract = {The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.},
author = {Ostrovskiĭ, M.},
journal = {Studia Mathematica},
keywords = {dual of a separable Banach space; nonquasireflexive quotient space; strictly singular quotient mapping},
language = {eng},
number = {1},
pages = {37-49},
title = {Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace},
url = {http://eudml.org/doc/215982},
volume = {105},
year = {1993},
}
TY - JOUR
AU - Ostrovskiĭ, M.
TI - Total subspaces in dual Banach spaces which are not norming over any infinite-dimensional subspace
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 1
SP - 37
EP - 49
AB - The main result: the dual of separable Banach space X contains a total subspace which is not norming over any infinite-dimensional subspace of X if and only if X has a nonquasireflexive quotient space with a strictly singular quotient mapping.
LA - eng
KW - dual of a separable Banach space; nonquasireflexive quotient space; strictly singular quotient mapping
UR - http://eudml.org/doc/215982
ER -
References
top- [Al] A. A. Albanese, On total subspaces in duals of spaces of type C(K) or , preprint.
- [An] A. Andrew, James' quasi-reflexive space is not isomorphic to any subspace of its dual, Israel J. Math. 38 (1981), 276-282. Zbl0461.46011
- [B] S. Banach, Théorie des opérations linéaires, Monografje Mat. 1, Warszawa 1932.
- [BDH] E. Behrends, S. Dierolf and P. Harmand, On a problem of Bellenot and Dubinsky, Math. Ann. 275 (1986), 337-339. Zbl0586.46001
- [CY] P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911. Zbl0080.31204
- [DJ] W. J. Davis and W. B. Johnson, Basic sequences and norming subspaces in non-quasi-reflexive Banach spaces, Israel J. Math. 14 (1973), 353-367. Zbl0273.46009
- [DL] W. J. Davis and J. Lindenstrauss, On total nonnorming subspaces, Proc. Amer. Math. Soc. 31 (1972), 109-111. Zbl0256.46025
- [DM] S. Dierolf and V. B. Moscatelli, A note on quojections, Funct. Approx. Comment. Math. 17 (1987), 131-138. Zbl0617.46006
- [D] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057-1071.
- [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York 1958.
- [F] R. J. Fleming, Weak*-sequential closures and the characteristic of subspaces of conjugate Banach spaces, Studia Math. 26 (1966), 307-313. Zbl0163.36203
- [G] B. V. Godun, On weak* derived sets of sets of linear functionals, Mat. Zametki 23 (1978), 607-616 (in Russian). Zbl0403.46017
- [GR] B. V. Godun and S. A. Rakov, Banach-Saks property and the three space problem, ibid. 31 (1982), 61-74 (in Russian).
- [Gu] V. I. Gurariǐ, On openings and inclinations of subspaces of a Banach space, Teor. Funktsiǐ Funktsional. Anal. i Prilozhen. 1 (1965), 194-204 (in Russian).
- [HW] R. Herman and R. Whitley, An example concerning reflexivity, Studia Math. 28 (1967), 289-294. Zbl0148.37101
- [JR] W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, ibid. 43 (1972), 77-92.
- [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin 1977. Zbl0362.46013
- [Ma] S. Mazurkiewicz, Sur la dérivée faible d'un ensemble de fonctionnelles linéaires, Studia Math. 2 (1930), 68-71. Zbl56.1024.02
- [Mc] O. C. McGehee, A proof of a statement of Banach about the weak* topology, Michigan Math. J. 15 (1968), 135-140. Zbl0164.43101
- [MM1] G. Metafune and V. B. Moscatelli, Generalized prequojections and bounded maps, Results in Math. 15 (1989), 172-178. Zbl0677.46001
- [MM2] G. Metafune and V. B. Moscatelli, Quojections and prequojections, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), Kluwer, Dordrecht 1989, 235-254.
- [M1] V. B. Moscatelli, On strongly non-norming subspaces, Note Mat. 7 (1987), 311-314. Zbl0682.46009
- [M2] V. B. Moscatelli, Strongly nonnorming subspaces and prequojections, Studia Math. 95 (1990), 249-254. Zbl0725.46016
- [O1] M. I. Ostrovskiǐ, w*-derived sets of transfinite order of subspaces of dual Banach spaces, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1987 (10), 9-12 (in Russian).
- [O2] M. I. Ostrovskiǐ, On total nonnorming subspaces of a conjugate Banach space, Teor. Funktsiǐ Funktsional. Anal. i Prilozhen. 53 (1990), 119-123 (in Russian); English transl.: J. Soviet Math. 58 (6) (1992), 577-579.
- [O3] M. I. Ostrovskiǐ, Regularizability of superpositions of inverse linear operators, Teor. Funktsiǐ Funktsional. Anal. i Prilozhen. 55 (1991), 96-100 (in Russian); English transl.: J. Soviet Math. 59 (1) (1992), 652-655.
- [Pe] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. Zbl0107.32504
- [P] Yu. I. Petunin, Conjugate Banach spaces containing subspaces of zero characteristic, Dokl. Akad. Nauk SSSR 154 (1964), 527-529 (in Russian); English transl.: Soviet Math. Dokl. 5 (1964), 131-133.
- [PP] Yu. I. Petunin and A. N. Plichko, The Theory of Characteristic of Subspaces and its Applications, Vishcha Shkola, Kiev 1980 (in Russian).
- [Pl] A. N. Plichko, On bounded biorthogonal systems in some function spaces, Studia Math. 84 (1986), 25-37. Zbl0622.46011
- [S1] D. Sarason, On the order of a simply connected domain, Michigan Math. J. 15 (1968), 129-133.
- [S2] D. Sarason, A remark on the weak-star topology of , Studia Math. 30 (1968), 355-359.
- [Sc] J. J. Schäffer, Linear differential equations and functional analysis. VI, Math. Ann. 145 (1962), 354-400. Zbl0099.32501
- [W] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, Cambridge University Press, 1991. Zbl0724.46012
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.