Ultraweakly compact operators and dual spaces
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 3, page 697-711
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAlvarez, Teresa. "Ultraweakly compact operators and dual spaces." Bollettino dell'Unione Matematica Italiana 7-B.3 (2004): 697-711. <http://eudml.org/doc/194973>.
@article{Alvarez2004,
abstract = {In this paper, the class of all bounded ultraweakly compact operators in Banach spaces is introduced and characterised in terms of their first and second conjugates. We analize the relationship between an ultraweakly compact operator and its conjugate. Examples of operators belonging to this class are exhibited. We also investigate the connection between ultraweak compactness of $T\in L(X, Y)$ and minimal subspaces of $Y'$ and we present a result of factorisation for ultraweakly compact operators.},
author = {Alvarez, Teresa},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {697-711},
publisher = {Unione Matematica Italiana},
title = {Ultraweakly compact operators and dual spaces},
url = {http://eudml.org/doc/194973},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Alvarez, Teresa
TI - Ultraweakly compact operators and dual spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/10//
PB - Unione Matematica Italiana
VL - 7-B
IS - 3
SP - 697
EP - 711
AB - In this paper, the class of all bounded ultraweakly compact operators in Banach spaces is introduced and characterised in terms of their first and second conjugates. We analize the relationship between an ultraweakly compact operator and its conjugate. Examples of operators belonging to this class are exhibited. We also investigate the connection between ultraweak compactness of $T\in L(X, Y)$ and minimal subspaces of $Y'$ and we present a result of factorisation for ultraweakly compact operators.
LA - eng
UR - http://eudml.org/doc/194973
ER -
References
top- ÁLVAREZ, T.- ONIEVA, V. M., On operators factorizable through quasi-reflexive Banach spaces, Arch. Math. Vol., 48 (1987), 85-87. Zbl0635.47017MR878013
- CASTILLO, J. M. F.- GONZÁLEZ, M., Three-space Problems in Banach Space Theory (Springer Lecture Notes in Math.1667, 1997). Zbl0914.46015MR1482801
- CLARK, J. R., Coreflexive and somewhat reflexive Banach spaces, Proc. Amer. Math. Soc., 36 (1972), 421-427. Zbl0264.46009MR308748
- CROSS, R. W., Multivalued linear Operators (Marcel Dekker, New York, 1998.) Zbl0911.47002MR1631548
- DAVIS, J.- FIGIEL, T.- JOHNSON, W.- PELCZYNSKI, A., Factoring weakly compact operators, J. Funct. Anal., 17 (1976), 311-327. Zbl0306.46020MR355536
- DIXMIER, J., Sur un théorème de Banach, Duke Math. J.15 (1948), 1057-1071. Zbl0031.36301MR27440
- DUNFORD, N.- SCHWARTZ, J. T., Linear Operators Part I (Interscience, New York, 1958). Zbl0084.10402
- VAN DULST, D., Ultra weak topologies on Banach spaces, Proc. of the seminar on random series, convex sets and geometry of Banach spaces, Various Publ. Series, 24 (1975), 57-66. Zbl0319.46010MR390724
- VANDULST, D., Reflexive and superreflexiveBanach spaces (Mathematisch Centrum, Amsterdam, 1978). Zbl0412.46006MR513590
- GODOFREY, G., Espaces de Banach: Existence et unicité de certains préduax, Ann. Inst. Fourier, Grenoble, no. 3 (1978). Zbl0368.46015MR511815
- GOLDBERG, S., Unbounded Linear Operators (McGraw-Hill, New York, 1966). Zbl0148.12501MR200692
- GONZÁLEZ, M.- ONIEVA, V. M., Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Royal Irish Acad., Ser. A, 88A (1988), 35-38. Zbl0633.47029MR974281
- JAMES, R. C., Some self-dual properties of normed linear spaces, Ann. of Math. Studies, 69 (1972), 159-175. Zbl0233.46025MR454600
- KALTON, N. I.- PELCZYNSKI, A., Kernels of surjections from -spaces with an applications to Sidon sets, Math. Ann.309, no. 1 (1997), 135-158. Zbl0901.46008MR1467651
- LINDENSTRAUSS, J.- TZAFRIRI, L., Classical Banach spaces I, sequence spaces (Springer-Verlag, New York, 1997). Zbl0362.46013MR500056
- NEIDINGER, R. D., Properties of Tauberian Operators on Banach Spaces (Doctoral dissertation, University of Texas at Austin, 1984).
- OSTROVSKI, M. I., Total subspaces in dual Banach spaces which are not norming over any infinite dimensional subspace, Studia Math., 105 (1993), 37-49. Zbl0810.46016MR1222187
- ROSENTHAL, H. P., On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from to , J. Funct. Anal., 4 (1969), 176-214. Zbl0185.20303MR250036
- YANG, K. W., The generalized Fredholm operators, Trans. Amer. Math. Soc., 216 (1976), 313-326. Zbl0297.47027MR423114
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.