Construction de p-multiplicateurs

Francisco González Vieli

Studia Mathematica (1993)

  • Volume: 105, Issue: 2, page 135-142
  • ISSN: 0039-3223

Abstract

top
Using characteristic functions of polyhedra, we construct radial p-multipliers which are continuous over n but not continuously differentiable through S n - 1 and give a p-multiplier criterion for homogeneous functions over 2 . We also exhibit fractal p-multipliers over the real line.

How to cite

top

González Vieli, Francisco. "Construction de p-multiplicateurs." Studia Mathematica 105.2 (1993): 135-142. <http://eudml.org/doc/215989>.

@article{GonzálezVieli1993,
author = {González Vieli, Francisco},
journal = {Studia Mathematica},
keywords = {characteristic functions of polyhedra; radial -multipliers; fractal -multipliers over the real line},
language = {fre},
number = {2},
pages = {135-142},
title = {Construction de p-multiplicateurs},
url = {http://eudml.org/doc/215989},
volume = {105},
year = {1993},
}

TY - JOUR
AU - González Vieli, Francisco
TI - Construction de p-multiplicateurs
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 2
SP - 135
EP - 142
LA - fre
KW - characteristic functions of polyhedra; radial -multipliers; fractal -multipliers over the real line
UR - http://eudml.org/doc/215989
ER -

References

top
  1. [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin 1977. 
  2. [Fa] K. Falconer, Fractal Geometry, Wiley, Chichester 1990. 
  3. [Fe] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336. Zbl0234.42009
  4. [H] L. Hörmander, Estimates for translation invariant operators in L p spaces, Acta Math. 104 (1960), 94-140. Zbl0093.11402
  5. [L] R. Larsen, An Introduction to the Theory of Multipliers, Springer, New York 1971. Zbl0213.13301
  6. [dL] K. de Leeuw, On L p multipliers, Ann. of Math. 81 (1965), 364-379. 
  7. [Ł] S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, Chichester 1988. Zbl0653.26001
  8. [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.