Disjointness results for some classes of stable processes
Michael Hernández; Christian Houdré
Studia Mathematica (1993)
- Volume: 105, Issue: 3, page 235-252
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHernández, Michael, and Houdré, Christian. "Disjointness results for some classes of stable processes." Studia Mathematica 105.3 (1993): 235-252. <http://eudml.org/doc/215996>.
@article{Hernández1993,
abstract = {We discuss the disjointness of two classes of stable stochastic processes: moving averages and Fourier transforms. Results on the incompatibility of these two representations date back to Urbanik. Here we extend various disjointness results to encompass larger classes of processes.},
author = {Hernández, Michael, Houdré, Christian},
journal = {Studia Mathematica},
keywords = {stable stochastic processes; Fourier transforms},
language = {eng},
number = {3},
pages = {235-252},
title = {Disjointness results for some classes of stable processes},
url = {http://eudml.org/doc/215996},
volume = {105},
year = {1993},
}
TY - JOUR
AU - Hernández, Michael
AU - Houdré, Christian
TI - Disjointness results for some classes of stable processes
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 3
SP - 235
EP - 252
AB - We discuss the disjointness of two classes of stable stochastic processes: moving averages and Fourier transforms. Results on the incompatibility of these two representations date back to Urbanik. Here we extend various disjointness results to encompass larger classes of processes.
LA - eng
KW - stable stochastic processes; Fourier transforms
UR - http://eudml.org/doc/215996
ER -
References
top- [1] J. Benedetto and H. Heinig, Weighted Hardy spaces and the Laplace transform, in: Lecture Notes in Math. 992, Springer, 1983, 240-277.
- [2] S. Cambanis and C. Houdré, Stable processes: moving averages versus Fourier transforms, Probab. Theory Related Fields 95 (1993), 75-85. Zbl0794.60027
- [3] S. Cambanis and R. Soltani, Prediction of stable processes: spectral and moving average representations, Z. Warhrsch. Verw. Gebiete 66 (1984), 593-612. Zbl0528.60035
- [4] N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory, Wiley Interscience, New York 1957. Zbl0084.10402
- [5] R. Edwards and G. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin 1977.
- [6] C. Houdré, Harmonizability, V-boundedness, (2,p)-boundedness of stochastic processes, Probab. Theory Related Fields 84 (1990), 39-54.
- [7] C. Houdré, Linear and Fourier stochastic analysis, ibid. 87 (1990), 167-188. Zbl0688.60028
- [8] R. Johnson, Recent results on weighted inequalities for the Fourier transform, in: Seminar Analysis of the Karl-Weierstraß-Institute 1986/87, Teubner-Texte Math. 106, B. Schulze and H. Triebel (eds.), Teubner, Leipzig 1988, 287-296.
- [9] W. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257-270. Zbl0536.42013
- [10] J. Lakey, Weighted norm inequalities for the Fourier transform, Ph.D. Thesis, University of Maryland, College Park, 1991.
- [11] A. Makagon and V. Mandrekar, The spectral representation of stable processes: harmonizability and regularity, Probab. Theory Related Fields 85 (1990), 1-11. Zbl0673.60041
- [12] B. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes, ibid. 82 (1989), 451-487. Zbl0659.60078
- [13] J. Rosinski, On stochastic integral representation of stable processes with sample paths in Banach spaces, J. Multivariate Anal. 20 (1986), 277-307. Zbl0606.60041
- [14] G. Samorodnitsky and M. Taqqu, Stable Random Processes, book to appear.
- [15] K. Urbanik, Prediction of strictly stationary sequences, Colloq. Math. 12 (1964), 115-129. Zbl0126.33502
- [16] K. Urbanik, Some prediction problems for strictly stationary processes, in: Proc. 5th Berkeley Sympos. Math. Statist. Probab., Vol. 2, Part I, Univ. of California Press, 1967, 235-258. Zbl0226.60065
- [17] K. Urbanik, Random measures and harmonizable sequences, Studia Math. 31 (1968), 61-88. Zbl0249.60014
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.