# Chaotic behavior of infinitely divisible processes

S. Cambanis; K. Podgórski; A. Weron

Studia Mathematica (1995)

- Volume: 115, Issue: 2, page 109-127
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topCambanis, S., Podgórski, K., and Weron, A.. "Chaotic behavior of infinitely divisible processes." Studia Mathematica 115.2 (1995): 109-127. <http://eudml.org/doc/216202>.

@article{Cambanis1995,

abstract = {The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.},

author = {Cambanis, S., Podgórski, K., Weron, A.},

journal = {Studia Mathematica},

keywords = {infinitely divisible process; ergodicity and mixing; stationary process; stochastic representation; Musielak-Orlicz space; hierarchy of chaos; infinitely divisible processes; stationary processes},

language = {eng},

number = {2},

pages = {109-127},

title = {Chaotic behavior of infinitely divisible processes},

url = {http://eudml.org/doc/216202},

volume = {115},

year = {1995},

}

TY - JOUR

AU - Cambanis, S.

AU - Podgórski, K.

AU - Weron, A.

TI - Chaotic behavior of infinitely divisible processes

JO - Studia Mathematica

PY - 1995

VL - 115

IS - 2

SP - 109

EP - 127

AB - The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.

LA - eng

KW - infinitely divisible process; ergodicity and mixing; stationary process; stochastic representation; Musielak-Orlicz space; hierarchy of chaos; infinitely divisible processes; stationary processes

UR - http://eudml.org/doc/216202

ER -

## References

top- R. J. Adler, S. Cambanis and G. Samorodnitsky (1990), On stable Markov processes, Stochastic Process. Appl. 34, 1-17. Zbl0692.60054
- R. M. Blumenthal (1957), An extended Markov property, Trans. Amer. Math. Soc. 85, 52-72. Zbl0084.13602
- S. Cambanis, C. D. Hardin and A. Weron (1987), Ergodic properties of stationary stable processes, Stochastic Process. Appl. 24, 1-18. Zbl0612.60034
- S. Cambanis and A. Ławniczak (1989), Ergodicity and mixing of infinitely divisible processes, unpublished preprint.
- I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai (1982), Ergodic Theory, Springer, Berlin. Zbl0493.28007
- S. V. Fomin (1950), Normal dynamical systems, Ukrain. Mat. Zh. 2, 25-47 (in Russian).
- U. Grenander (1950), Stochastic processes and statistical inference, Ark. Mat. 1, 195-277. Zbl0041.45807
- A. Gross (1994), Some mixing conditions for stationary symmetric stable stochastic processes, Stochastic Process. Appl. 51, 277-285. Zbl0813.60039
- A. Gross and J. B. Robertson (1993), Ergodic properties of random measures on stationary sequences of sets, ibid. 46, 249-265. Zbl0786.60044
- M. Hernández and C. Houdré (1993), Disjointness results for some classes of stable processes, Studia Math. 105 235-252. Zbl0810.60044
- P. Kokoszka and K. Podgórski (1992), Ergodicity and weak mixing of semistable processes, Probab. Math. Statist. 13, 239-244. Zbl0781.60029
- A. Lasota and M. C. Mackey (1994), Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, New York. Zbl0784.58005
- V. P. Leonov (1960), The use of the characteristic functional and semiinvariants in the theory of stationary processes, Dokl. Akad. Nauk SSSR 133, 523-526 (in Russian).
- G. Maruyama (1949), The harmonic analysis of stationary stochastic processes, Mem. Fac. Sci. Kyusyu Ser. Mat. IV 1, 49-106. Zbl0045.40602
- G. Maruyama (1970), Infinitely divisible processes, Probab. Theory Appl. 15, 3-23. Zbl0268.60036
- J. Musielak (1983), Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, New York. D. Newton (1968), On a principal factor system of a normal dynamical system, J. London Math. Soc. 43, 275-279. Zbl0169.20601
- K. Podgórski (1992), A note on ergodic symmetric stable processes, Stochastic Process. Appl. 43, 355-362. Zbl0758.60036
- K. Podgórski and A. Weron (1991), Characterization of ergodic stable processes via the dynamical functional, in: Stable Processes and Related Topics, S. Cambanis et al. (eds.), Birkhäuser, Boston, 317-328. Zbl0723.60034
- B. S. Rajput and J. Rosiński (1989), Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82, 451-487. Zbl0659.60078
- V. A. Rokhlin (1964), Exact endomorphisms of Lebesgue space, Amer. Math. Soc. Transl. (2) 39, 1-36. Zbl0154.15703
- P. Walters (1982), An Introduction to Ergodic Theory, Springer, Berlin. Zbl0475.28009
- A. Weron (1985), Harmonizable stable processes on groups: spectral, ergodic and interpolation properties, Z. Wahrsch. Verw. Gebiete 68, 473-491. Zbl0537.60008

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.