Chaotic behavior of infinitely divisible processes

S. Cambanis; K. Podgórski; A. Weron

Studia Mathematica (1995)

  • Volume: 115, Issue: 2, page 109-127
  • ISSN: 0039-3223

Abstract

top
The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.

How to cite

top

Cambanis, S., Podgórski, K., and Weron, A.. "Chaotic behavior of infinitely divisible processes." Studia Mathematica 115.2 (1995): 109-127. <http://eudml.org/doc/216202>.

@article{Cambanis1995,
abstract = {The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.},
author = {Cambanis, S., Podgórski, K., Weron, A.},
journal = {Studia Mathematica},
keywords = {infinitely divisible process; ergodicity and mixing; stationary process; stochastic representation; Musielak-Orlicz space; hierarchy of chaos; infinitely divisible processes; stationary processes},
language = {eng},
number = {2},
pages = {109-127},
title = {Chaotic behavior of infinitely divisible processes},
url = {http://eudml.org/doc/216202},
volume = {115},
year = {1995},
}

TY - JOUR
AU - Cambanis, S.
AU - Podgórski, K.
AU - Weron, A.
TI - Chaotic behavior of infinitely divisible processes
JO - Studia Mathematica
PY - 1995
VL - 115
IS - 2
SP - 109
EP - 127
AB - The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.
LA - eng
KW - infinitely divisible process; ergodicity and mixing; stationary process; stochastic representation; Musielak-Orlicz space; hierarchy of chaos; infinitely divisible processes; stationary processes
UR - http://eudml.org/doc/216202
ER -

References

top
  1. R. J. Adler, S. Cambanis and G. Samorodnitsky (1990), On stable Markov processes, Stochastic Process. Appl. 34, 1-17. Zbl0692.60054
  2. R. M. Blumenthal (1957), An extended Markov property, Trans. Amer. Math. Soc. 85, 52-72. Zbl0084.13602
  3. S. Cambanis, C. D. Hardin and A. Weron (1987), Ergodic properties of stationary stable processes, Stochastic Process. Appl. 24, 1-18. Zbl0612.60034
  4. S. Cambanis and A. Ławniczak (1989), Ergodicity and mixing of infinitely divisible processes, unpublished preprint. 
  5. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai (1982), Ergodic Theory, Springer, Berlin. Zbl0493.28007
  6. S. V. Fomin (1950), Normal dynamical systems, Ukrain. Mat. Zh. 2, 25-47 (in Russian). 
  7. U. Grenander (1950), Stochastic processes and statistical inference, Ark. Mat. 1, 195-277. Zbl0041.45807
  8. A. Gross (1994), Some mixing conditions for stationary symmetric stable stochastic processes, Stochastic Process. Appl. 51, 277-285. Zbl0813.60039
  9. A. Gross and J. B. Robertson (1993), Ergodic properties of random measures on stationary sequences of sets, ibid. 46, 249-265. Zbl0786.60044
  10. M. Hernández and C. Houdré (1993), Disjointness results for some classes of stable processes, Studia Math. 105 235-252. Zbl0810.60044
  11. P. Kokoszka and K. Podgórski (1992), Ergodicity and weak mixing of semistable processes, Probab. Math. Statist. 13, 239-244. Zbl0781.60029
  12. A. Lasota and M. C. Mackey (1994), Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, New York. Zbl0784.58005
  13. V. P. Leonov (1960), The use of the characteristic functional and semiinvariants in the theory of stationary processes, Dokl. Akad. Nauk SSSR 133, 523-526 (in Russian). 
  14. G. Maruyama (1949), The harmonic analysis of stationary stochastic processes, Mem. Fac. Sci. Kyusyu Ser. Mat. IV 1, 49-106. Zbl0045.40602
  15. G. Maruyama (1970), Infinitely divisible processes, Probab. Theory Appl. 15, 3-23. Zbl0268.60036
  16. J. Musielak (1983), Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, New York. D. Newton (1968), On a principal factor system of a normal dynamical system, J. London Math. Soc. 43, 275-279. Zbl0169.20601
  17. K. Podgórski (1992), A note on ergodic symmetric stable processes, Stochastic Process. Appl. 43, 355-362. Zbl0758.60036
  18. K. Podgórski and A. Weron (1991), Characterization of ergodic stable processes via the dynamical functional, in: Stable Processes and Related Topics, S. Cambanis et al. (eds.), Birkhäuser, Boston, 317-328. Zbl0723.60034
  19. B. S. Rajput and J. Rosiński (1989), Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82, 451-487. Zbl0659.60078
  20. V. A. Rokhlin (1964), Exact endomorphisms of Lebesgue space, Amer. Math. Soc. Transl. (2) 39, 1-36. Zbl0154.15703
  21. P. Walters (1982), An Introduction to Ergodic Theory, Springer, Berlin. Zbl0475.28009
  22. A. Weron (1985), Harmonizable stable processes on groups: spectral, ergodic and interpolation properties, Z. Wahrsch. Verw. Gebiete 68, 473-491. Zbl0537.60008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.