# Weighted Bergman projections and tangential area integrals

Studia Mathematica (1993)

- Volume: 106, Issue: 1, page 59-76
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topCohn, William. "Weighted Bergman projections and tangential area integrals." Studia Mathematica 106.1 (1993): 59-76. <http://eudml.org/doc/216003>.

@article{Cohn1993,

abstract = {Let Ω be a bounded strictly pseudoconvex domain in $ℂ^n$. In this paper we find sufficient conditions on a function f defined on Ω in order that the weighted Bergman projection $P_\{s\}f$ belong to the Hardy-Sobolev space $H^p_k(∂Ω)$. The conditions on f we consider are formulated in terms of tent spaces and complex tangential vector fields. If f is holomorphic then these conditions are necessary and sufficient in order that f belong to the Hardy-Sobolev space $H^p_k(∂Ω)$.},

author = {Cohn, William},

journal = {Studia Mathematica},

keywords = {weighted Bergman projection; Hardy-Sobolev space},

language = {eng},

number = {1},

pages = {59-76},

title = {Weighted Bergman projections and tangential area integrals},

url = {http://eudml.org/doc/216003},

volume = {106},

year = {1993},

}

TY - JOUR

AU - Cohn, William

TI - Weighted Bergman projections and tangential area integrals

JO - Studia Mathematica

PY - 1993

VL - 106

IS - 1

SP - 59

EP - 76

AB - Let Ω be a bounded strictly pseudoconvex domain in $ℂ^n$. In this paper we find sufficient conditions on a function f defined on Ω in order that the weighted Bergman projection $P_{s}f$ belong to the Hardy-Sobolev space $H^p_k(∂Ω)$. The conditions on f we consider are formulated in terms of tent spaces and complex tangential vector fields. If f is holomorphic then these conditions are necessary and sufficient in order that f belong to the Hardy-Sobolev space $H^p_k(∂Ω)$.

LA - eng

KW - weighted Bergman projection; Hardy-Sobolev space

UR - http://eudml.org/doc/216003

ER -

## References

top- [AB] P. Ahern and J. Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of ${\u2102}^{n}$, Rev. Mat. Iberoamericana 4 (1988), 123-153. Zbl0685.42008
- [AN] P. Ahern and A. Nagel, Strong ${L}^{p}$ estimates for maximal functions with respect to singular measures; with applications to exceptional sets, Duke Math. J. 53 (1986), 359-393. Zbl0601.32007
- [AS1] P. Ahern and R. Schneider, Holomorphic Lipschitz functions in pseudoconvex domains, Amer. J. Math. 101 (1979), 543-565. Zbl0455.32008
- [AS2] P. Ahern and R. Schneider, A smoothing property of the Henkin and Szegö projections, Duke Math. J. 47 (1980), 135-143. Zbl0453.32004
- [B] F. Beatrous, Boundary estimates for derivatives of harmonic functions, Studia Math. 98 (1991), 55-71. Zbl0734.42011
- [C] W. Cohn, Tangential characterizations of Hardy-Sobolev spaces, Indiana Univ. Math. J. 40 (1991), 1221-1249. Zbl0768.46017
- [CMSt] R. Coifman, Y. Meyer and E. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335. Zbl0569.42016
- [GK] I. Gohberg and N. Krupnik, Einführung in die Theorie der eindimensionalen singulären Integraloperatoren, Birkhäuser, Basel 1979. Zbl0413.47040
- [Gr] S. Grellier, Complex tangential characterizations of Hardy-Sobolev spaces of holomorphic functions, preprint. Zbl0779.32001
- [KSt] N. Kerzman and E. M. Stein, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), 197-223. Zbl0387.32009
- [L] E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), 257-272. Zbl0688.32020
- [Ra] M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, New York 1986. Zbl0591.32002
- [Ru] W. Rudin, Function Theory in the Unit Ball of ${\u2102}^{n}$, Springer, New York 1980.
- [St1] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton 1970.
- [St2] E. M. Stein, Some problems in harmonic analysis, in: Harmonic Analysis in Euclidean Spaces, Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 3-19.
- [St3] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Math. Notes, Princeton Univ. Press, Princeton 1972.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.