Wavelet bases in L p ( )

Gustaf Gripenberg

Studia Mathematica (1993)

  • Volume: 106, Issue: 2, page 175-187
  • ISSN: 0039-3223

Abstract

top
It is shown that an orthonormal wavelet basis for L 2 ( ) associated with a multiresolution is an unconditional basis for L p ( ) , 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.

How to cite

top

Gripenberg, Gustaf. "Wavelet bases in $L^{p}(ℝ)$." Studia Mathematica 106.2 (1993): 175-187. <http://eudml.org/doc/216011>.

@article{Gripenberg1993,
abstract = {It is shown that an orthonormal wavelet basis for $L^2(ℝ)$ associated with a multiresolution is an unconditional basis for $L^p(ℝ)$, 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.},
author = {Gripenberg, Gustaf},
journal = {Studia Mathematica},
keywords = {basis; $L^p$; multiresolution; unconditional; wavelet; orthonormal wavelet basis; unconditional basis; father wavelet},
language = {eng},
number = {2},
pages = {175-187},
title = {Wavelet bases in $L^\{p\}(ℝ)$},
url = {http://eudml.org/doc/216011},
volume = {106},
year = {1993},
}

TY - JOUR
AU - Gripenberg, Gustaf
TI - Wavelet bases in $L^{p}(ℝ)$
JO - Studia Mathematica
PY - 1993
VL - 106
IS - 2
SP - 175
EP - 187
AB - It is shown that an orthonormal wavelet basis for $L^2(ℝ)$ associated with a multiresolution is an unconditional basis for $L^p(ℝ)$, 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.
LA - eng
KW - basis; $L^p$; multiresolution; unconditional; wavelet; orthonormal wavelet basis; unconditional basis; father wavelet
UR - http://eudml.org/doc/216011
ER -

References

top
  1. [1] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459. Zbl0736.42021
  2. [2] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. Zbl0644.42026
  3. [3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. 
  4. [4] C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. Zbl0683.42031
  5. [5] R. C. James, Bases in Banach spaces, Amer. Math. Monthly 89 (1982), 625-640. Zbl0506.46006
  6. [6] P. G. Lemarié, Analyse multi-échelles et ondelettes à support compact, in: Les Ondelettes en 1989, P. G. Lemarié (ed.), Lecture Notes in Math. 1438, Springer, Berlin 1990, 26-38. 
  7. [7] S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L 2 ( ) , Trans. Amer. Math. Soc. 315 (1989), 69-87. 
  8. [8] Y. Meyer, Ondelettes et Opérateurs I, Hermann, Paris 1990. Zbl0694.41037
  9. [9] I. Singer, Bases in Banach Spaces, Vol. I, Springer, Berlin 1970. 
  10. [10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970. Zbl0207.13501
  11. [11] G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev. 31 (1989), 614-627. Zbl0683.42030
  12. [12] A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.