Wavelet bases in
Studia Mathematica (1993)
- Volume: 106, Issue: 2, page 175-187
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459. Zbl0736.42021
- [2] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. Zbl0644.42026
- [3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- [4] C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. Zbl0683.42031
- [5] R. C. James, Bases in Banach spaces, Amer. Math. Monthly 89 (1982), 625-640. Zbl0506.46006
- [6] P. G. Lemarié, Analyse multi-échelles et ondelettes à support compact, in: Les Ondelettes en 1989, P. G. Lemarié (ed.), Lecture Notes in Math. 1438, Springer, Berlin 1990, 26-38.
- [7] S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of , Trans. Amer. Math. Soc. 315 (1989), 69-87.
- [8] Y. Meyer, Ondelettes et Opérateurs I, Hermann, Paris 1990. Zbl0694.41037
- [9] I. Singer, Bases in Banach Spaces, Vol. I, Springer, Berlin 1970.
- [10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970. Zbl0207.13501
- [11] G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev. 31 (1989), 614-627. Zbl0683.42030
- [12] A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge 1959. Zbl0085.05601