# Wavelet bases in ${L}^{p}\left(\mathbb{R}\right)$

Studia Mathematica (1993)

- Volume: 106, Issue: 2, page 175-187
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topGripenberg, Gustaf. "Wavelet bases in $L^{p}(ℝ)$." Studia Mathematica 106.2 (1993): 175-187. <http://eudml.org/doc/216011>.

@article{Gripenberg1993,

abstract = {It is shown that an orthonormal wavelet basis for $L^2(ℝ)$ associated with a multiresolution is an unconditional basis for $L^p(ℝ)$, 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.},

author = {Gripenberg, Gustaf},

journal = {Studia Mathematica},

keywords = {basis; $L^p$; multiresolution; unconditional; wavelet; orthonormal wavelet basis; unconditional basis; father wavelet},

language = {eng},

number = {2},

pages = {175-187},

title = {Wavelet bases in $L^\{p\}(ℝ)$},

url = {http://eudml.org/doc/216011},

volume = {106},

year = {1993},

}

TY - JOUR

AU - Gripenberg, Gustaf

TI - Wavelet bases in $L^{p}(ℝ)$

JO - Studia Mathematica

PY - 1993

VL - 106

IS - 2

SP - 175

EP - 187

AB - It is shown that an orthonormal wavelet basis for $L^2(ℝ)$ associated with a multiresolution is an unconditional basis for $L^p(ℝ)$, 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.

LA - eng

KW - basis; $L^p$; multiresolution; unconditional; wavelet; orthonormal wavelet basis; unconditional basis; father wavelet

UR - http://eudml.org/doc/216011

ER -

## References

top- [1] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459. Zbl0736.42021
- [2] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. Zbl0644.42026
- [3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- [4] C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. Zbl0683.42031
- [5] R. C. James, Bases in Banach spaces, Amer. Math. Monthly 89 (1982), 625-640. Zbl0506.46006
- [6] P. G. Lemarié, Analyse multi-échelles et ondelettes à support compact, in: Les Ondelettes en 1989, P. G. Lemarié (ed.), Lecture Notes in Math. 1438, Springer, Berlin 1990, 26-38.
- [7] S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of ${L}^{2}\left(\mathbb{R}\right)$, Trans. Amer. Math. Soc. 315 (1989), 69-87.
- [8] Y. Meyer, Ondelettes et Opérateurs I, Hermann, Paris 1990. Zbl0694.41037
- [9] I. Singer, Bases in Banach Spaces, Vol. I, Springer, Berlin 1970.
- [10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970. Zbl0207.13501
- [11] G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev. 31 (1989), 614-627. Zbl0683.42030
- [12] A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge 1959. Zbl0085.05601

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.