Ondelettes, analyses multirésolutions et filtres miroirs en quadrature
Annales de l'I.H.P. Analyse non linéaire (1990)
- Volume: 7, Issue: 5, page 439-459
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCohen, A.. "Ondelettes, analyses multirésolutions et filtres miroirs en quadrature." Annales de l'I.H.P. Analyse non linéaire 7.5 (1990): 439-459. <http://eudml.org/doc/78233>.
@article{Cohen1990,
author = {Cohen, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quadrature mirror filter; wavelet; multiresolution analysis; analysis with regular filter},
language = {fre},
number = {5},
pages = {439-459},
publisher = {Gauthier-Villars},
title = {Ondelettes, analyses multirésolutions et filtres miroirs en quadrature},
url = {http://eudml.org/doc/78233},
volume = {7},
year = {1990},
}
TY - JOUR
AU - Cohen, A.
TI - Ondelettes, analyses multirésolutions et filtres miroirs en quadrature
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 5
SP - 439
EP - 459
LA - fre
KW - quadrature mirror filter; wavelet; multiresolution analysis; analysis with regular filter
UR - http://eudml.org/doc/78233
ER -
References
top- [1] Y. Meyer, Ondelettes et opérateurs, éditions Hermann. Zbl0694.41037MR1085487
- [2] Y. Meyer, Ondelettes, fonctions splines et analyses graduées, Cahiers du Ceremade, n° 8703.
- [3] Y. Meyer, Construction de bases orthonormées d'ondelettes, Texte à la mémoire de José Luis Rubio de Francia. Zbl0735.42017
- [4] S. Mallat, A theory for multiresolution signal decomposition : the wavelet representation, I.E.E.E. Trans. Pattern Anal. Machine Intelligence, 1989 (à paraître). Zbl0709.94650
- [5] S. Mallat, Multirésolution approximation and wavelets orthonormal bases of L2 (R), Trans. Am. Math. Soc. (à paraître). Zbl0686.42018MR1008470
- [6] J. Morlet, A. Grossman et R. Kronland-Martinet, Analysis of sound patterns through waveley transforms, Int. J. Pattern Recognition Artificial Intelligence, special issue on expert systems and pattern analysis, vol. 1, n° 2, World Scientific Publishing Company.
- [7] J. Morlet, A. Grossman et R. Kronland-Martinet, Reading and understanding continuous wavelet transforms, C.P.T., Luminy Case 907, 13288Marseille Cedex 09. Zbl0850.42006
- [8] I. Daubechies, Orthonormal basis of compactly supported wavelets, AT & T Bell labs., 600 Mountain avenue, Murray Hill, NJ 07947 U.S.A.
- [9] K. Grochenig, Analyse mathématique, Analyse multi-échelles et bases d'ondelettes, Note présentée par Yves Meyer. Zbl0625.42014
- [10] Esteban et Galand, Application of QMF to split and band voice coding schemes, Proc.1977, Int. Conf. Acoust. Speech, Signal processing, Hartford.
- [11] Smith and Barnwell, Exact reconstruction techniques for tree structured subband coders, I.E.E.E. Trans. A.S.S.P., juin 1986.
- [12] Adelson, Orthogonal pyramid transform for image coding, SPIE, Visual communication and image processing, vol. 845, 1987.
- [13] Cohen, Construction de bases d'ondelettes α-hölderiennes. A paraître dans Revista Mathématica Iberoamericana. Zbl0757.41025
Citations in EuDML Documents
top- Gustaf Gripenberg, Wavelet bases in
- Gustaf Gripenberg, A necessary and sufficient condition for the existence of a father wavelet
- Dana Černá, Václav Finěk, Karel Najzar, On the exact values of coefficients of coiflets
- Antoine Ayaghe, A geometrical solution of a problem on wavelets
- Abdolaziz Abdollahi, Jahangir Cheshmavar, Mohsen Taghavi, Wavelets generated by the Rudin-Shapiro polynomials
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.