Ondelettes, analyses multirésolutions et filtres miroirs en quadrature

A. Cohen

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 5, page 439-459
  • ISSN: 0294-1449

How to cite

top

Cohen, A.. "Ondelettes, analyses multirésolutions et filtres miroirs en quadrature." Annales de l'I.H.P. Analyse non linéaire 7.5 (1990): 439-459. <http://eudml.org/doc/78233>.

@article{Cohen1990,
author = {Cohen, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quadrature mirror filter; wavelet; multiresolution analysis; analysis with regular filter},
language = {fre},
number = {5},
pages = {439-459},
publisher = {Gauthier-Villars},
title = {Ondelettes, analyses multirésolutions et filtres miroirs en quadrature},
url = {http://eudml.org/doc/78233},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Cohen, A.
TI - Ondelettes, analyses multirésolutions et filtres miroirs en quadrature
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 5
SP - 439
EP - 459
LA - fre
KW - quadrature mirror filter; wavelet; multiresolution analysis; analysis with regular filter
UR - http://eudml.org/doc/78233
ER -

References

top
  1. [1] Y. Meyer, Ondelettes et opérateurs, éditions Hermann. Zbl0694.41037MR1085487
  2. [2] Y. Meyer, Ondelettes, fonctions splines et analyses graduées, Cahiers du Ceremade, n° 8703. 
  3. [3] Y. Meyer, Construction de bases orthonormées d'ondelettes, Texte à la mémoire de José Luis Rubio de Francia. Zbl0735.42017
  4. [4] S. Mallat, A theory for multiresolution signal decomposition : the wavelet representation, I.E.E.E. Trans. Pattern Anal. Machine Intelligence, 1989 (à paraître). Zbl0709.94650
  5. [5] S. Mallat, Multirésolution approximation and wavelets orthonormal bases of L2 (R), Trans. Am. Math. Soc. (à paraître). Zbl0686.42018MR1008470
  6. [6] J. Morlet, A. Grossman et R. Kronland-Martinet, Analysis of sound patterns through waveley transforms, Int. J. Pattern Recognition Artificial Intelligence, special issue on expert systems and pattern analysis, vol. 1, n° 2, World Scientific Publishing Company. 
  7. [7] J. Morlet, A. Grossman et R. Kronland-Martinet, Reading and understanding continuous wavelet transforms, C.P.T., Luminy Case 907, 13288Marseille Cedex 09. Zbl0850.42006
  8. [8] I. Daubechies, Orthonormal basis of compactly supported wavelets, AT & T Bell labs., 600 Mountain avenue, Murray Hill, NJ 07947 U.S.A. 
  9. [9] K. Grochenig, Analyse mathématique, Analyse multi-échelles et bases d'ondelettes, Note présentée par Yves Meyer. Zbl0625.42014
  10. [10] Esteban et Galand, Application of QMF to split and band voice coding schemes, Proc.1977, Int. Conf. Acoust. Speech, Signal processing, Hartford. 
  11. [11] Smith and Barnwell, Exact reconstruction techniques for tree structured subband coders, I.E.E.E. Trans. A.S.S.P., juin 1986. 
  12. [12] Adelson, Orthogonal pyramid transform for image coding, SPIE, Visual communication and image processing, vol. 845, 1987. 
  13. [13] Cohen, Construction de bases d'ondelettes α-hölderiennes. A paraître dans Revista Mathématica Iberoamericana. Zbl0757.41025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.