# On the weak (1,1) boundedness of a class of oscillatory singular integrals

Studia Mathematica (1993)

- Volume: 106, Issue: 3, page 279-287
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topPan, Yibiao. "On the weak (1,1) boundedness of a class of oscillatory singular integrals." Studia Mathematica 106.3 (1993): 279-287. <http://eudml.org/doc/216017>.

@article{Pan1993,

abstract = {We prove the uniform weak (1,1) boundedness of a class of oscillatory singular integrals under certain conditions on the phase functions. Our conditions allow the phase function to be completely flat. Examples of such phase functions include $ϕ(x) = e^\{-1/x^2\}$ and $ϕ(x) = xe^\{-1/|x|\}$. Some related counterexample is also discussed.},

author = {Pan, Yibiao},

journal = {Studia Mathematica},

keywords = {weak (1,1) boundedness; oscillatory singular integrals; phase functions},

language = {eng},

number = {3},

pages = {279-287},

title = {On the weak (1,1) boundedness of a class of oscillatory singular integrals},

url = {http://eudml.org/doc/216017},

volume = {106},

year = {1993},

}

TY - JOUR

AU - Pan, Yibiao

TI - On the weak (1,1) boundedness of a class of oscillatory singular integrals

JO - Studia Mathematica

PY - 1993

VL - 106

IS - 3

SP - 279

EP - 287

AB - We prove the uniform weak (1,1) boundedness of a class of oscillatory singular integrals under certain conditions on the phase functions. Our conditions allow the phase function to be completely flat. Examples of such phase functions include $ϕ(x) = e^{-1/x^2}$ and $ϕ(x) = xe^{-1/|x|}$. Some related counterexample is also discussed.

LA - eng

KW - weak (1,1) boundedness; oscillatory singular integrals; phase functions

UR - http://eudml.org/doc/216017

ER -

## References

top- [1] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. Zbl0667.42007
- [2] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted ${L}^{p}$ estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. Zbl0594.42007
- [3] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. Zbl0188.42601
- [4] Y. Hu, Oscillatory singular integrals on weighted Hardy spaces, Studia Math. 102 (1992), 145-156. Zbl0808.42009
- [5] Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320. Zbl0779.42007
- [6] A. Nagel, J. Vance, S. Wainger, and D. Weinberg, Hilbert transforms for convex curves, Duke Math. J. 50 (1983), 735-744. Zbl0524.44001
- [7] A. Nagel and S. Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235-252. Zbl0341.44005
- [8] Y. Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207-220. Zbl0735.45010
- [9] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. Zbl0728.42013
- [10] Y. Pan, Weak (1,1) estimate for oscillatory singular integrals with real-analytic phases, Proc. Amer. Math. Soc., to appear. Zbl0803.42002
- [11] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157. Zbl0622.42011
- [12] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
- [13] P. Sjölin, Convolution with oscillating kernels on ${H}^{p}$ spaces, J. London Math. Soc. 23 (1981), 442-454 . Zbl0426.46034
- [14] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton 1986, 307-355.
- [15] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton 1970. Zbl0207.13501
- [16] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge 1959. Zbl0085.05601

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.