Oscillatory singular integrals on weighted Hardy spaces

Yue Hu

Studia Mathematica (1992)

  • Volume: 102, Issue: 2, page 145-156
  • ISSN: 0039-3223

Abstract

top
Let T f ( x ) = p . v . ʃ ¹ e i P ( x - y ) f ( y ) / ( x - y ) d y , where P is a real polynomial on ℝ. It is proved that T is bounded on the weighted H¹(wdx) space with w ∈ A₁.

How to cite

top

Hu, Yue. "Oscillatory singular integrals on weighted Hardy spaces." Studia Mathematica 102.2 (1992): 145-156. <http://eudml.org/doc/215919>.

@article{Hu1992,
abstract = {Let $Tf(x) = p.v. ʃ_\{ℝ¹\} e^\{iP(x-y)\} f(y)/(x-y) dy$, where P is a real polynomial on ℝ. It is proved that T is bounded on the weighted H¹(wdx) space with w ∈ A₁.},
author = {Hu, Yue},
journal = {Studia Mathematica},
keywords = {oscillatory singular integrals; H¹ space; A₁ condition; weighted Hardy spaces; condition},
language = {eng},
number = {2},
pages = {145-156},
title = {Oscillatory singular integrals on weighted Hardy spaces},
url = {http://eudml.org/doc/215919},
volume = {102},
year = {1992},
}

TY - JOUR
AU - Hu, Yue
TI - Oscillatory singular integrals on weighted Hardy spaces
JO - Studia Mathematica
PY - 1992
VL - 102
IS - 2
SP - 145
EP - 156
AB - Let $Tf(x) = p.v. ʃ_{ℝ¹} e^{iP(x-y)} f(y)/(x-y) dy$, where P is a real polynomial on ℝ. It is proved that T is bounded on the weighted H¹(wdx) space with w ∈ A₁.
LA - eng
KW - oscillatory singular integrals; H¹ space; A₁ condition; weighted Hardy spaces; condition
UR - http://eudml.org/doc/215919
ER -

References

top
  1. [1] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-157. Zbl0667.42007
  2. [2] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. Zbl0291.44007
  3. [3] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116 [Notas Mat. 104], North-Holland, Amsterdam 1985. 
  4. [4] Y. Hu, A weighted norm inequality for oscillatory singular integrals, in: Lecture Notes in Math., to appear. 
  5. [5] Y. Hu, Weighted L p estimates for oscillatory integrals, preprint. 
  6. [6] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms I, Acta Math. 157 (1986), 99-157. Zbl0622.42011
  7. [7] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
  8. [8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  9. [9] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295. Zbl0393.42010
  10. [10] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0232.42007
  11. [11] R. Strichartz, Singular integrals supported on submanifolds, Studia Math. 74 (1982), 137-151. Zbl0501.43007
  12. [12] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989. 
  13. [13] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, Fla., 1986. Zbl0621.42001
  14. [14] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, London 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.