Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm

A. Pełczyński; M. Wojciechowski

Studia Mathematica (1993)

  • Volume: 107, Issue: 1, page 61-100
  • ISSN: 0039-3223

Abstract

top
Let E be a Banach space. Let L ¹ ( 1 ) ( d , E ) be the Sobolev space of E-valued functions on d with the norm ʃ d f E d x + ʃ d f E d x = f + f . It is proved that if f L ¹ ( 1 ) ( d , E ) then there exists a sequence ( g m ) L ( 1 ) ¹ ( d , E ) such that f = m g m ; m ( g m + g m ) < ; and g m 1 / d g m ( d - 1 ) / d b g m for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding L ( 1 ) ¹ ( d , E ) L ² ( d , E ) . In particular, the embedding into Besov spaces L ¹ ( 1 ) ( d , E ) B p , 1 θ ( p , d ) ( d , E ) is proved, where θ ( p , d ) = d ( p - 1 + d - 1 - 1 ) for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada.

How to cite

top

Pełczyński, A., and Wojciechowski, M.. "Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm." Studia Mathematica 107.1 (1993): 61-100. <http://eudml.org/doc/216022>.

@article{Pełczyński1993,
abstract = {Let E be a Banach space. Let $L¹_\{(1)\}(ℝ^d,E)$ be the Sobolev space of E-valued functions on $ℝ^d$ with the norm $ʃ_\{ℝ^d\} ∥f∥_E dx + ʃ_\{ℝ^d\} ∥∇f∥_E dx = ∥f∥₁ + ∥∇f∥₁$. It is proved that if $f ∈ L¹_\{(1)\}(ℝ^d,E)$ then there exists a sequence $(g_m) ⊂ L_\{(1)\}¹(ℝ^d,E)$ such that $f = ∑_m g_m$; $∑_m (∥g_m∥₁ + ∥∇g_m ∥₁) < ∞$; and $∥g_m∥_∞^\{1/d\} ∥g_m∥₁^\{(d-1)/d\} ≤ b∥∇g_m∥₁$ for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding $L_\{(1)\}¹(ℝ^d,E) ↪ L²(ℝ^d,E)$. In particular, the embedding into Besov spaces $L¹_\{(1)\} (ℝ^d,E) ↪ B_\{p,1\}^\{θ(p,d)\}(ℝ^d,E)$ is proved, where $θ(p,d) = d(p^\{-1\} + d^\{-1\} -1)$ for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada.},
author = {Pełczyński, A., Wojciechowski, M.},
journal = {Studia Mathematica},
keywords = {Sobolev space; Sobolev type embedding; embedding into Besov spaces},
language = {eng},
number = {1},
pages = {61-100},
title = {Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm},
url = {http://eudml.org/doc/216022},
volume = {107},
year = {1993},
}

TY - JOUR
AU - Pełczyński, A.
AU - Wojciechowski, M.
TI - Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm
JO - Studia Mathematica
PY - 1993
VL - 107
IS - 1
SP - 61
EP - 100
AB - Let E be a Banach space. Let $L¹_{(1)}(ℝ^d,E)$ be the Sobolev space of E-valued functions on $ℝ^d$ with the norm $ʃ_{ℝ^d} ∥f∥_E dx + ʃ_{ℝ^d} ∥∇f∥_E dx = ∥f∥₁ + ∥∇f∥₁$. It is proved that if $f ∈ L¹_{(1)}(ℝ^d,E)$ then there exists a sequence $(g_m) ⊂ L_{(1)}¹(ℝ^d,E)$ such that $f = ∑_m g_m$; $∑_m (∥g_m∥₁ + ∥∇g_m ∥₁) < ∞$; and $∥g_m∥_∞^{1/d} ∥g_m∥₁^{(d-1)/d} ≤ b∥∇g_m∥₁$ for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding $L_{(1)}¹(ℝ^d,E) ↪ L²(ℝ^d,E)$. In particular, the embedding into Besov spaces $L¹_{(1)} (ℝ^d,E) ↪ B_{p,1}^{θ(p,d)}(ℝ^d,E)$ is proved, where $θ(p,d) = d(p^{-1} + d^{-1} -1)$ for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada.
LA - eng
KW - Sobolev space; Sobolev type embedding; embedding into Besov spaces
UR - http://eudml.org/doc/216022
ER -

References

top
  1. [A] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, C. R. Acad. Sci. Paris 280 (1975), 279-281. Zbl0295.53024
  2. [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, London, 1988. Zbl0647.46057
  3. [Br1] J. Bourgain, A Hardy inequality in Sobolev spaces, Vrije University, Brussels, 1981. 
  4. [Br2] J. Bourgain, Some examples of multipliers in Sobolev spaces, IHES, 1985. 
  5. [BZ] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Nauka, Leningrad, 1980 (in Russian); English transl.: Springer, 1988. 
  6. [CSV] T. Coulhon, L. Saloff-Coste and N. Varopoulos, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992. Zbl0813.22003
  7. [DS] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1958. 
  8. [F] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. Zbl0176.00801
  9. [FF] H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520. Zbl0187.31301
  10. [G] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102-137. Zbl0089.09401
  11. [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983. 
  12. [H] R. Hunt, On L(p,q) spaces, Enseign. Math. (2) 12 (1966), 249-275. Zbl0181.40301
  13. [Jo] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. Zbl0489.30017
  14. [K] V. I. Kolyada, On relations between moduli of continuity in different metrics, Trudy Mat. Inst. Steklov. 181 (1988), 117-136 (in Russian); English transl.: Proc. Steklov Inst. Math. 4 (1989), 127-148. 
  15. [Kr] A. S. Kronrod, On functions of two variables, Uspekhi Mat. Nauk 5 (1) (1950), 24-134 (in Russian). 
  16. [Le] M. Ledoux, Semigroup proofs of the isoperimetric inequality in euclidean and Gauss space, Bull. Sci. Math., to appear. 
  17. [LW] L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961-962. Zbl0035.38302
  18. [M1] V. G. Maz'ya, Classes of sets and embedding theorems for function spaces, Dokl. Akad. Nauk SSSR 133 (1960), 527-530 (in Russian). 
  19. [M2] V. G. Maz'ya, S. L. Sobolev's Spaces, Leningrad University Publishing House, Leningrad, 1985 (in Russian). 
  20. [N] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 116-162. Zbl0088.07601
  21. [Pee] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976. 
  22. [Po] S. Poornima, An embedding theorem for the Sobolev space W 1 , 1 , Bull. Sci. Math. (2) 107 (1983), 253-259. Zbl0529.46025
  23. [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. 
  24. [T] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. Zbl0353.46018
  25. [Tr] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel 1983. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.