Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm
A. Pełczyński; M. Wojciechowski
Studia Mathematica (1993)
- Volume: 107, Issue: 1, page 61-100
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topPełczyński, A., and Wojciechowski, M.. "Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm." Studia Mathematica 107.1 (1993): 61-100. <http://eudml.org/doc/216022>.
@article{Pełczyński1993,
abstract = {Let E be a Banach space. Let $L¹_\{(1)\}(ℝ^d,E)$ be the Sobolev space of E-valued functions on $ℝ^d$ with the norm $ʃ_\{ℝ^d\} ∥f∥_E dx + ʃ_\{ℝ^d\} ∥∇f∥_E dx = ∥f∥₁ + ∥∇f∥₁$. It is proved that if $f ∈ L¹_\{(1)\}(ℝ^d,E)$ then there exists a sequence $(g_m) ⊂ L_\{(1)\}¹(ℝ^d,E)$ such that $f = ∑_m g_m$; $∑_m (∥g_m∥₁ + ∥∇g_m ∥₁) < ∞$; and $∥g_m∥_∞^\{1/d\} ∥g_m∥₁^\{(d-1)/d\} ≤ b∥∇g_m∥₁$ for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding $L_\{(1)\}¹(ℝ^d,E) ↪ L²(ℝ^d,E)$. In particular, the embedding into Besov spaces $L¹_\{(1)\} (ℝ^d,E) ↪ B_\{p,1\}^\{θ(p,d)\}(ℝ^d,E)$ is proved, where $θ(p,d) = d(p^\{-1\} + d^\{-1\} -1)$ for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada.},
author = {Pełczyński, A., Wojciechowski, M.},
journal = {Studia Mathematica},
keywords = {Sobolev space; Sobolev type embedding; embedding into Besov spaces},
language = {eng},
number = {1},
pages = {61-100},
title = {Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm},
url = {http://eudml.org/doc/216022},
volume = {107},
year = {1993},
}
TY - JOUR
AU - Pełczyński, A.
AU - Wojciechowski, M.
TI - Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm
JO - Studia Mathematica
PY - 1993
VL - 107
IS - 1
SP - 61
EP - 100
AB - Let E be a Banach space. Let $L¹_{(1)}(ℝ^d,E)$ be the Sobolev space of E-valued functions on $ℝ^d$ with the norm $ʃ_{ℝ^d} ∥f∥_E dx + ʃ_{ℝ^d} ∥∇f∥_E dx = ∥f∥₁ + ∥∇f∥₁$. It is proved that if $f ∈ L¹_{(1)}(ℝ^d,E)$ then there exists a sequence $(g_m) ⊂ L_{(1)}¹(ℝ^d,E)$ such that $f = ∑_m g_m$; $∑_m (∥g_m∥₁ + ∥∇g_m ∥₁) < ∞$; and $∥g_m∥_∞^{1/d} ∥g_m∥₁^{(d-1)/d} ≤ b∥∇g_m∥₁$ for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding $L_{(1)}¹(ℝ^d,E) ↪ L²(ℝ^d,E)$. In particular, the embedding into Besov spaces $L¹_{(1)} (ℝ^d,E) ↪ B_{p,1}^{θ(p,d)}(ℝ^d,E)$ is proved, where $θ(p,d) = d(p^{-1} + d^{-1} -1)$ for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada.
LA - eng
KW - Sobolev space; Sobolev type embedding; embedding into Besov spaces
UR - http://eudml.org/doc/216022
ER -
References
top- [A] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, C. R. Acad. Sci. Paris 280 (1975), 279-281. Zbl0295.53024
- [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, London, 1988. Zbl0647.46057
- [Br1] J. Bourgain, A Hardy inequality in Sobolev spaces, Vrije University, Brussels, 1981.
- [Br2] J. Bourgain, Some examples of multipliers in Sobolev spaces, IHES, 1985.
- [BZ] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Nauka, Leningrad, 1980 (in Russian); English transl.: Springer, 1988.
- [CSV] T. Coulhon, L. Saloff-Coste and N. Varopoulos, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992. Zbl0813.22003
- [DS] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1958.
- [F] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. Zbl0176.00801
- [FF] H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520. Zbl0187.31301
- [G] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102-137. Zbl0089.09401
- [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983.
- [H] R. Hunt, On L(p,q) spaces, Enseign. Math. (2) 12 (1966), 249-275. Zbl0181.40301
- [Jo] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. Zbl0489.30017
- [K] V. I. Kolyada, On relations between moduli of continuity in different metrics, Trudy Mat. Inst. Steklov. 181 (1988), 117-136 (in Russian); English transl.: Proc. Steklov Inst. Math. 4 (1989), 127-148.
- [Kr] A. S. Kronrod, On functions of two variables, Uspekhi Mat. Nauk 5 (1) (1950), 24-134 (in Russian).
- [Le] M. Ledoux, Semigroup proofs of the isoperimetric inequality in euclidean and Gauss space, Bull. Sci. Math., to appear.
- [LW] L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961-962. Zbl0035.38302
- [M1] V. G. Maz'ya, Classes of sets and embedding theorems for function spaces, Dokl. Akad. Nauk SSSR 133 (1960), 527-530 (in Russian).
- [M2] V. G. Maz'ya, S. L. Sobolev's Spaces, Leningrad University Publishing House, Leningrad, 1985 (in Russian).
- [N] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 116-162. Zbl0088.07601
- [Pee] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976.
- [Po] S. Poornima, An embedding theorem for the Sobolev space , Bull. Sci. Math. (2) 107 (1983), 253-259. Zbl0529.46025
- [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.
- [T] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. Zbl0353.46018
- [Tr] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel 1983.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.