Estimates of Fourier transforms in Sobolev spaces

V. Kolyada

Studia Mathematica (1997)

  • Volume: 125, Issue: 1, page 67-74
  • ISSN: 0039-3223

Abstract

top
We investigate the Fourier transforms of functions in the Sobolev spaces W 1 r 1 , . . . , r n . It is proved that for any function f W 1 r 1 , . . . , r n the Fourier transform f̂ belongs to the Lorentz space L n / r , 1 , where r = n ( j = 1 n 1 / r j ) - 1 n . Furthermore, we derive from this result that for any mixed derivative D s f ( f C 0 , s = ( s 1 , . . . , s n ) ) the weighted norm ( D s f ) L 1 ( w ) ( w ( ξ ) = | ξ | - n ) can be estimated by the sum of L 1 -norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.

How to cite

top

Kolyada, V.. "Estimates of Fourier transforms in Sobolev spaces." Studia Mathematica 125.1 (1997): 67-74. <http://eudml.org/doc/216422>.

@article{Kolyada1997,
abstract = {We investigate the Fourier transforms of functions in the Sobolev spaces $W_1^\{r_1,..., r_n\}$. It is proved that for any function $f ∈ W_1^\{r_1,...,r_n\}$ the Fourier transform f̂ belongs to the Lorentz space $L^\{n/r,1\}$, where $r = n(∑_\{j=1\}^n 1/r_\{j\})^\{-1\} ≤ n$. Furthermore, we derive from this result that for any mixed derivative $D^\{s\}f (f ∈ C_0^∞, s=(s_1,... ,s_n))$ the weighted norm $∥(D^\{s\}f)^∧∥_\{L^1(w)\} (w(ξ) = |ξ|^\{-n\})$ can be estimated by the sum of $L^1$-norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.},
author = {Kolyada, V.},
journal = {Studia Mathematica},
keywords = {Fourier transform; mixed derivative; Hardy inequality; Sobolev space},
language = {eng},
number = {1},
pages = {67-74},
title = {Estimates of Fourier transforms in Sobolev spaces},
url = {http://eudml.org/doc/216422},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Kolyada, V.
TI - Estimates of Fourier transforms in Sobolev spaces
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 1
SP - 67
EP - 74
AB - We investigate the Fourier transforms of functions in the Sobolev spaces $W_1^{r_1,..., r_n}$. It is proved that for any function $f ∈ W_1^{r_1,...,r_n}$ the Fourier transform f̂ belongs to the Lorentz space $L^{n/r,1}$, where $r = n(∑_{j=1}^n 1/r_{j})^{-1} ≤ n$. Furthermore, we derive from this result that for any mixed derivative $D^{s}f (f ∈ C_0^∞, s=(s_1,... ,s_n))$ the weighted norm $∥(D^{s}f)^∧∥_{L^1(w)} (w(ξ) = |ξ|^{-n})$ can be estimated by the sum of $L^1$-norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.
LA - eng
KW - Fourier transform; mixed derivative; Hardy inequality; Sobolev space
UR - http://eudml.org/doc/216422
ER -

References

top
  1. [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. Zbl0647.46057
  2. [2] J. Berg and Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. 
  3. [3] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Vols. 1, 2, Wiley, 1979. 
  4. [4] J. Bourgain, A Hardy inequality in Sobolev spaces, Vrije University, Brussels, 1981. 
  5. [5] J. Bourgain, Some examples of multipliers in Sobolev spaces, IHES, 1985. 
  6. [6] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-276. Zbl0181.40301
  7. [7] W. B. Jurkat and G. Sampson, On maximal rearrangement inequalities for the Fourier transform, Trans. Amer. Math. Soc. 282 (1984), 625-643. Zbl0537.42029
  8. [8] V. I. Kolyada, On embedding of Sobolev spaces, Mat. Zametki 54 (3) (1993), 48-71 (in Russian). Zbl0821.46043
  9. [9] J. Peetre, Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Sem. Mat. Padova 42 (1969), 15-26. Zbl0241.46033
  10. [10] A. Pełczyński and M. Wojciechowski, Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm, Studia Math. 107 (1993), 61-100. Zbl0811.46028
  11. [11] S. Poornima, An embedding theorem for the Sobolev space W 1 , 1 , Bull. Sci. Math. 107 (1983), 253-259. Zbl0529.46025
  12. [12] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492. Zbl0072.32402
  13. [13] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971. Zbl0232.42007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.