Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces
Studia Mathematica (1993)
- Volume: 107, Issue: 3, page 305-315
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBoyd, Christopher. "Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces." Studia Mathematica 107.3 (1993): 305-315. <http://eudml.org/doc/216035>.
@article{Boyd1993,
abstract = {For U open in a locally convex space E it is shown in [31] that there is a complete locally convex space G(U) such that $G(U)^\{\prime \}_i = (ℋ (U),τ_δ)$. Here, we assume U is balanced open in a Fréchet space and give necessary and sufficient conditions for G(U) to be Montel and reflexive. These results give an insight into the relationship between the $τ_0$ and $τ_ω$ topologies on ℋ (U).},
author = {Boyd, Christopher},
journal = {Studia Mathematica},
keywords = {Fréchet space},
language = {eng},
number = {3},
pages = {305-315},
title = {Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces},
url = {http://eudml.org/doc/216035},
volume = {107},
year = {1993},
}
TY - JOUR
AU - Boyd, Christopher
TI - Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces
JO - Studia Mathematica
PY - 1993
VL - 107
IS - 3
SP - 305
EP - 315
AB - For U open in a locally convex space E it is shown in [31] that there is a complete locally convex space G(U) such that $G(U)^{\prime }_i = (ℋ (U),τ_δ)$. Here, we assume U is balanced open in a Fréchet space and give necessary and sufficient conditions for G(U) to be Montel and reflexive. These results give an insight into the relationship between the $τ_0$ and $τ_ω$ topologies on ℋ (U).
LA - eng
KW - Fréchet space
UR - http://eudml.org/doc/216035
ER -
References
top- [1] R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. Zbl0536.46015
- [2] J. M. Ansemil and S. Ponte, Topologies associated with the compact open topology on ℋ(U), Proc. Roy. Irish Acad. 82A (1982), 121-128.
- [3] J. M. Ansemil and S. Ponte, The barrelled topology associated with the compact-open topology on ℋ (U) and ℋ (K), Portugal. Math. 43 (1985-1986), 429-438. Zbl0611.46032
- [4] J. M. Ansemil and S. Ponte, The compact open topology and the Nachbin ported topologies on spaces of holomorphic functions, Arch. Math. (Basel) 51 (1988), 65-70. Zbl0631.46028
- [5] J. M. Ansemil and J. Taskinen, On a problem of topologies in infinite dimensional holomorphy, ibid. 54 (1990), 61-64. Zbl0711.46032
- [6] R. Aron, L. Moraes and R. Ryan, Factorization of holomorphic mappings in infinite dimensions, Math. Ann. 277 (1987), 617-628. Zbl0611.46053
- [7] P. Aviles and J. Mujica, Holomorphic germs and homogeneous polynomials on quasinormable metrizable spaces, Rend. Mat. 6 (1977), 117-127. Zbl0444.46038
- [8] J. A. Barroso, Topologias nos espaços de aplicações holomorfas ebtre espaços localmente convexos, An. Acad. Brasil. Ciênc. 43 (1971), 525-546.
- [9] J. A. Barroso and L. Nachbin, Some topological properties of spaces of holomorphic mappings in infinitely many variables, in: Advances in Holomorphy, J. A. Barroso (ed.), North-Holland Math. Stud. 34, North-Holland, 1979, 67-91. Zbl0409.46052
- [10] K.-D. Bierstedt and J. Bonet, Density conditions in Fréchet and (DF)-spaces, Rev. Mat. Univ. Complut. Madrid 2 (1989), no. suplementario, 59-75. Zbl0745.46002
- [11] K.-D. Bierstedt and R. Meise, Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to a study of , in: Advances in Holomorphy, J. A. Barroso (ed.), North-Holland Math. Stud. 34, North-Holland, 1979, 111-178.
- [12] P. Boland and S. Dineen, Holomorphic functions on fully nuclear spaces, Bull. Soc. Math. France 106 (1978), 311-336. Zbl0402.46017
- [13] J. Bonet, J. C. Dí az and J. Taskinen, Tensor stable Fréchet and (DF) spaces, Collect. Math., to appear. Zbl0808.46001
- [14] C. Boyd, Distinguished preduals of the space of holomorphic functions, Rev. Mat. Univ. Complut. Madrid, to appear. Zbl0809.46031
- [15] P. G. Casazza and E. W. Odell, Tsirelson space, II, preprint.
- [16] A. Defant and M. Maestre, Holomorphic functions and (BB)-property on Fréchet -Montel spaces, Math. Proc. Cambridge Philos. Soc., to appear. Zbl0847.46021
- [17] J. C. Dí az and A. M. Miñarro, Distinguished Fréchet spaces and projective tensor products, Doǧa Mat. 14 (1990), 191-208. Zbl0970.46505
- [18] J. C. Dí az and A. M. Miñarro, On Fréchet Montel spaces and projective tensor products, Math. Proc. Cambridge Philos. Soc., to appear.
- [19] S. Dineen, Complex Analysis on Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, 1981. Zbl0484.46044
- [20] S. Dineen, Holomorphic functions on Fréchet-Montel spaces, J. Math. Anal. Appl. 163 (1992), 581-587. Zbl0849.46031
- [21] S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat., to appear. Zbl0838.46036
- [22] P. Galindo, D. García and M. Maestre, The coincidence of and for spaces of holomorphic functions on some Fréchet-Montel spaces, Proc. Roy. Irish Acad. 91A (1991), 137-143. Zbl0725.46025
- [23] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [24] J. Horváth, Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Reading, Mass., 1966.
- [25] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
- [26] N. Kalton, Schauder decompositions in locally convex spaces, Proc. Cambridge Philos. Soc. 68 (1970), 377-392. Zbl0196.13505
- [27] P. Mazet, Analytic Sets in Locally Convex Spaces, North-Holland Math. Stud. 89, North-Holland, 1984.
- [28] R. Meise, A remark on the ported and the compact-open topology for spaces of holomorphic functions on nuclear Fréchet spaces, Proc. Roy. Irish Acad. 81A (1981), 217-223. Zbl0483.46019
- [29] J. Mujica, A Banach-Dieudonné theorem for the space of germs of holomorphic functions, J. Funct. Anal. 57 (1984), 31-48. Zbl0546.46021
- [30] J. Mujica, Holomorphic approximation in infinite-dimensional Riemann domains, Studia Math. 82 (1985), 107-134. Zbl0584.32035
- [31] J. Mujica and L. Nachbin, Linearization of holomorphic mappings on locally convex spaces, J. Math. Pures Appl. 71 (1992), 543-560. Zbl0849.46032
- [32] A. Peris, Productos tensoriales de espacios localmente convexos casinormables y otras clases relacionadas, thesis, Universidad de Valencia, 1992.
- [33] R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, thesis, Trinity College Dublin, 1980.
- [34] H. H. Schaefer, Topological Vector Spaces, 3rd printing corrected, Springer, 1971.
- [35] J. Schmets, Espaces de fonctions continues, Lecture Notes in Math. 519, Springer, 1976. Zbl0334.46022
- [36] M. Schottenloher, for domains in , in: Infinite Dimensional Holomorphy and Applications, M. Matos (ed.), North-Holland Math. Stud. 12, North-Holland, 1977, 393-395.
- [37] J. Taskinen, Examples of non-distinguished Fréchet spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. 14 (1989), 75-88. Zbl0632.46002
- [38] B. S. Tsirelson, Not every Banach space contains an imbedding of or , Functional Anal. Appl. 8 (1974), 138-141.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.