Convolution algebras with weighted rearrangement-invariant norm
Studia Mathematica (1994)
- Volume: 108, Issue: 2, page 103-126
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topKerman, R., and Sawyer, E.. "Convolution algebras with weighted rearrangement-invariant norm." Studia Mathematica 108.2 (1994): 103-126. <http://eudml.org/doc/216044>.
@article{Kerman1994,
abstract = {Let X be a rearrangement-invariant space of Lebesgue-measurable functions on $ℝ^n$, such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on $ℝ^n$, define $X(w) = \{F: ℝ^n → ℂ: ∞ > ∥F∥_\{X(w)\} := ∥Fw∥_X\}$. We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at $x ∈ ℝ^n$ by $(F∗G)(x) = ʃ_\{ℝ^n\} F(x-y)G(y)dy$; more precisely, when $∥F∗G∥_\{X(w)\} ≤ ∥F∥_\{X(w)\} ∥G∥_\{X(w)\}$ for all F,G ∈ X(w).},
author = {Kerman, R., Sawyer, E.},
journal = {Studia Mathematica},
keywords = {rearrangement-invariant space of Lebesgue-measurable functions; Lebesgue, Lorentz or Orlicz spaces; algebra; convolution product},
language = {eng},
number = {2},
pages = {103-126},
title = {Convolution algebras with weighted rearrangement-invariant norm},
url = {http://eudml.org/doc/216044},
volume = {108},
year = {1994},
}
TY - JOUR
AU - Kerman, R.
AU - Sawyer, E.
TI - Convolution algebras with weighted rearrangement-invariant norm
JO - Studia Mathematica
PY - 1994
VL - 108
IS - 2
SP - 103
EP - 126
AB - Let X be a rearrangement-invariant space of Lebesgue-measurable functions on $ℝ^n$, such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on $ℝ^n$, define $X(w) = {F: ℝ^n → ℂ: ∞ > ∥F∥_{X(w)} := ∥Fw∥_X}$. We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at $x ∈ ℝ^n$ by $(F∗G)(x) = ʃ_{ℝ^n} F(x-y)G(y)dy$; more precisely, when $∥F∗G∥_{X(w)} ≤ ∥F∥_{X(w)} ∥G∥_{X(w)}$ for all F,G ∈ X(w).
LA - eng
KW - rearrangement-invariant space of Lebesgue-measurable functions; Lebesgue, Lorentz or Orlicz spaces; algebra; convolution product
UR - http://eudml.org/doc/216044
ER -
References
top- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. Zbl0647.46057
- [2] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Neuvième Congrès Math. Scand., Helsingfors, 1938, 345-366. Zbl65.0483.02
- [3] D. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canad. J. Math. 19 (1967), 599-616. Zbl0147.11302
- [4] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. Zbl0204.13703
- [5] M. Cwikel and P. Nilsson, Interpolation of weighted Banach lattices, Mem. Amer. Math. Soc., to appear. Zbl0548.46058
- [6] T. A. Gillespie, Factorization in Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser. A 84 (1981), 287-300. Zbl0475.46028
- [7] S. Grabiner, Weighted convolution algebras on the half line, J. Math. Anal. Appl. 83 (1981), 531-583. Zbl0489.46023
- [8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, II, Springer, Berlin, 1963. Zbl0115.10603
- [9] R. Howard and A. Schep, Norms of positive operators on -spaces, Proc. Amer. Math. Soc. 109 (1990), 135-146. Zbl0721.47012
- [10] E. Kerlin and A. Lambert, Strictly cyclic shifts on , Acta Sci. Math. (Szeged) 35 (1973), 87-94. Zbl0266.47021
- [11] G. Ya. Lozanovskiĭ, On some Banach lattices, Sibirsk. Mat. Zh. 10 (1969), 419-431 (in Russian). Zbl0194.43302
- [12] N. K. Nikol'skiĭ, Invariant subspaces of the shift operator in some sequence spaces, Candidate's Dissertation, Leningrad, 1966 (in Russian).
- [13] F. Riesz, Sur une inégalité intégrale, J. London Math. Soc. 5 (1930), 162-168.
- [14] S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. 46 (1938), 471-497 (in Russian).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.