Convolution algebras with weighted rearrangement-invariant norm

R. Kerman; E. Sawyer

Studia Mathematica (1994)

  • Volume: 108, Issue: 2, page 103-126
  • ISSN: 0039-3223

Abstract

top
Let X be a rearrangement-invariant space of Lebesgue-measurable functions on n , such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on n , define X ( w ) = F : n : > F X ( w ) : = F w X . We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at x n by ( F G ) ( x ) = ʃ n F ( x - y ) G ( y ) d y ; more precisely, when F G X ( w ) F X ( w ) G X ( w ) for all F,G ∈ X(w).

How to cite

top

Kerman, R., and Sawyer, E.. "Convolution algebras with weighted rearrangement-invariant norm." Studia Mathematica 108.2 (1994): 103-126. <http://eudml.org/doc/216044>.

@article{Kerman1994,
abstract = {Let X be a rearrangement-invariant space of Lebesgue-measurable functions on $ℝ^n$, such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on $ℝ^n$, define $X(w) = \{F: ℝ^n → ℂ: ∞ > ∥F∥_\{X(w)\} := ∥Fw∥_X\}$. We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at $x ∈ ℝ^n$ by $(F∗G)(x) = ʃ_\{ℝ^n\} F(x-y)G(y)dy$; more precisely, when $∥F∗G∥_\{X(w)\} ≤ ∥F∥_\{X(w)\} ∥G∥_\{X(w)\}$ for all F,G ∈ X(w).},
author = {Kerman, R., Sawyer, E.},
journal = {Studia Mathematica},
keywords = {rearrangement-invariant space of Lebesgue-measurable functions; Lebesgue, Lorentz or Orlicz spaces; algebra; convolution product},
language = {eng},
number = {2},
pages = {103-126},
title = {Convolution algebras with weighted rearrangement-invariant norm},
url = {http://eudml.org/doc/216044},
volume = {108},
year = {1994},
}

TY - JOUR
AU - Kerman, R.
AU - Sawyer, E.
TI - Convolution algebras with weighted rearrangement-invariant norm
JO - Studia Mathematica
PY - 1994
VL - 108
IS - 2
SP - 103
EP - 126
AB - Let X be a rearrangement-invariant space of Lebesgue-measurable functions on $ℝ^n$, such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on $ℝ^n$, define $X(w) = {F: ℝ^n → ℂ: ∞ > ∥F∥_{X(w)} := ∥Fw∥_X}$. We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at $x ∈ ℝ^n$ by $(F∗G)(x) = ʃ_{ℝ^n} F(x-y)G(y)dy$; more precisely, when $∥F∗G∥_{X(w)} ≤ ∥F∥_{X(w)} ∥G∥_{X(w)}$ for all F,G ∈ X(w).
LA - eng
KW - rearrangement-invariant space of Lebesgue-measurable functions; Lebesgue, Lorentz or Orlicz spaces; algebra; convolution product
UR - http://eudml.org/doc/216044
ER -

References

top
  1. [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. Zbl0647.46057
  2. [2] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Neuvième Congrès Math. Scand., Helsingfors, 1938, 345-366. Zbl65.0483.02
  3. [3] D. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canad. J. Math. 19 (1967), 599-616. Zbl0147.11302
  4. [4] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. Zbl0204.13703
  5. [5] M. Cwikel and P. Nilsson, Interpolation of weighted Banach lattices, Mem. Amer. Math. Soc., to appear. Zbl0548.46058
  6. [6] T. A. Gillespie, Factorization in Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser. A 84 (1981), 287-300. Zbl0475.46028
  7. [7] S. Grabiner, Weighted convolution algebras on the half line, J. Math. Anal. Appl. 83 (1981), 531-583. Zbl0489.46023
  8. [8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, II, Springer, Berlin, 1963. Zbl0115.10603
  9. [9] R. Howard and A. Schep, Norms of positive operators on L p -spaces, Proc. Amer. Math. Soc. 109 (1990), 135-146. Zbl0721.47012
  10. [10] E. Kerlin and A. Lambert, Strictly cyclic shifts on l p , Acta Sci. Math. (Szeged) 35 (1973), 87-94. Zbl0266.47021
  11. [11] G. Ya. Lozanovskiĭ, On some Banach lattices, Sibirsk. Mat. Zh. 10 (1969), 419-431 (in Russian). Zbl0194.43302
  12. [12] N. K. Nikol'skiĭ, Invariant subspaces of the shift operator in some sequence spaces, Candidate's Dissertation, Leningrad, 1966 (in Russian). 
  13. [13] F. Riesz, Sur une inégalité intégrale, J. London Math. Soc. 5 (1930), 162-168. 
  14. [14] S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. 46 (1938), 471-497 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.