Page 1 Next

Displaying 1 – 20 of 58

Showing per page

A characterization of Fourier transforms

Philippe Jaming (2010)

Colloquium Mathematicae

The aim of this paper is to show that, in various situations, the only continuous linear (or not) map that transforms a convolution product into a pointwise product is a Fourier transform. We focus on the cyclic groups ℤ/nℤ, the integers ℤ, the torus 𝕋 and the real line. We also ask a related question for the twisted convolution.

A convolution property of the Cantor-Lebesgue measure, II

Daniel M. Oberlin (2003)

Colloquium Mathematicae

For 1 ≤ p,q ≤ ∞, we prove that the convolution operator generated by the Cantor-Lebesgue measure on the circle is a contraction whenever it is bounded from L p ( ) to L q ( ) . We also give a condition on p which is necessary if this operator maps L p ( ) into L²().

A limit theorem for the q-convolution

Anna Kula (2011)

Banach Center Publications

The q-convolution is a measure-preserving transformation which originates from non-commutative probability, but can also be treated as a one-parameter deformation of the classical convolution. We show that its commutative aspect is further certified by the fact that the q-convolution satisfies all of the conditions of the generalized convolution (in the sense of Urbanik). The last condition of Urbanik's definition, the law of large numbers, is the crucial part to be proved and the non-commutative...

Approximation et transfert d'opérateurs de convolution

Noël Lohoué (1976)

Annales de l'institut Fourier

Soient G 1 et G 2 deux groupes abéliens localement compacts de dual Γ 1 et Γ 2 . Soit h : Γ 1 Γ 2 un homomorphisme continu d’image dense de Γ 1 dans Γ 2 . Soit 1 p  ; on prouve un théorème d’approximation des multiplicateurs de F L p ( G 2 ) et on utilise ce résultat pour démontrer le suivant : soit m : Γ 2 C une fonction continue ; m est un multiplicateur de F L p ( G 2 ) si, et seulement si, m h est un multiplicateur de F L p ( G 1 ) .

Characterization of the convolution operators on quasianalytic classes of Beurling type that admit a continuous linear right inverse

José Bonet, Reinhold Meise (2008)

Studia Mathematica

Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space ( ω ) ( ) of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on ( ω ) [ a , b ] for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on ( ω ) ( ) .

Convolution algebras with weighted rearrangement-invariant norm

R. Kerman, E. Sawyer (1994)

Studia Mathematica

Let X be a rearrangement-invariant space of Lebesgue-measurable functions on n , such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on n , define X ( w ) = F : n : > F X ( w ) : = F w X . We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at x n by ( F G ) ( x ) = ʃ n F ( x - y ) G ( y ) d y ; more precisely, when F G X ( w ) F X ( w ) G X ( w ) for all F,G ∈ X(w).

Convolutions related to q-deformed commutativity

Anna Kula (2010)

Banach Center Publications

Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution of measures...

Currently displaying 1 – 20 of 58

Page 1 Next