Some spectral inequalities involving generalized scalar operators

B. Aupetit; D. Drissi

Studia Mathematica (1994)

  • Volume: 109, Issue: 1, page 51-66
  • ISSN: 0039-3223

Abstract

top
In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. & V. Istrăţescu, Barnes, Pytlik, Boyadzhiev and others.

How to cite

top

Aupetit, B., and Drissi, D.. "Some spectral inequalities involving generalized scalar operators." Studia Mathematica 109.1 (1994): 51-66. <http://eudml.org/doc/216060>.

@article{Aupetit1994,
abstract = {In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. & V. Istrăţescu, Barnes, Pytlik, Boyadzhiev and others.},
author = {Aupetit, B., Drissi, D.},
journal = {Studia Mathematica},
keywords = {Levin's subordination theory; entire functions of exponential type; generalized spectral operators},
language = {eng},
number = {1},
pages = {51-66},
title = {Some spectral inequalities involving generalized scalar operators},
url = {http://eudml.org/doc/216060},
volume = {109},
year = {1994},
}

TY - JOUR
AU - Aupetit, B.
AU - Drissi, D.
TI - Some spectral inequalities involving generalized scalar operators
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 1
SP - 51
EP - 66
AB - In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. & V. Istrăţescu, Barnes, Pytlik, Boyadzhiev and others.
LA - eng
KW - Levin's subordination theory; entire functions of exponential type; generalized spectral operators
UR - http://eudml.org/doc/216060
ER -

References

top
  1. [1] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. Zbl0705.46021
  2. [2] C. Apostol, Teorie spectrală şi calcul functional, Stud. Cerc. Mat. 20 (1968), 635-668. 
  3. [3] B. Aupetit, A Primer on Spectral Theory, Springer, 1991. 
  4. [4] B. Aupetit and D. Drissi, Local spectrum theory revisited, to appear. 
  5. [5] B. A. Barnes, Operators which satisfy polynomial growth conditions, Pacific J. Math. 138 (1987), 209-219. Zbl0693.47001
  6. [6] R. G. Bartle and C. A. Kariotis, Some localizations of the spectral mapping theorem, Duke Math. J. 40 (1973), 651-660. Zbl0268.47004
  7. [7] R. P. Boas, Entire Functions, Academic Press, 1954. Zbl0058.30201
  8. [8] B. Bollobás, A property of hermitian elements, J. London Math. Soc. 4 (1971), 379-380. Zbl0239.46044
  9. [9] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971. Zbl0207.44802
  10. [10] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge University Press, 1973. Zbl0262.47001
  11. [11] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. Zbl0271.46039
  12. [12] H. N. Bojadjiev [K. N. Boyadzhiev], New applications of Bernstein inequality to the theory of operators: a local Sinclair lemma and a generalization of the Fuglede-Putnam theorem, in: Complex Analysis and Applications 85, Sofia, 1986, 97-104. 
  13. [13] H. N. Bojadjiev [K. N. Boyadzhiev], Sinclair type inequalities for the local spectral radius and related topics, Israel J. Math. 57 (1987), 272-284. Zbl0648.47005
  14. [14] A. Browder, On Bernstein's inequality and the norm of hermitian operators, Amer. Math. Monthly 78 (1971), 871-873. Zbl0224.47011
  15. [15] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968. 
  16. [16] M. J. Crabb and P. G. Spain, Commutators and normal operators, Glasgow Math. J. 18 (1977), 197-198. Zbl0351.47025
  17. [17] H. R. Dowson, Some properties of prespectral operators, Proc. Roy. Irish Acad. 74 (1974), 207-221. Zbl0268.47034
  18. [18] H. R. Dowson, T. A. Gillespie and P. G. Spain, A commutativity theorem for hermitian operators, Math. Ann. 220 (1976), 215-217. Zbl0305.47014
  19. [19] D. Drissi, Quelques inégalités spectrales pour les opérateurs scalaires généralisés, Ph.D. thesis, Université Laval, 1993. 
  20. [20] I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer, 1977. Zbl0381.47001
  21. [21] C. Foiaş, Une application des distributions vectorielles à la théorie spectrale, Bull. Sci. Math. 84 (1960), 147-158. Zbl0095.09905
  22. [22] C. K. Fong, Normal operators on Banach spaces, Glasgow Math. J. 20 (1979), 163-168. 
  23. [23] I. Gelfand, Zur theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50. Zbl67.0407.02
  24. [24] E. Hille, On the theory of characters of groups and semi-groups in normed vector rings, Proc. Nat. Acad. Sci. 30 (1944), 58-60. Zbl0061.25305
  25. [25] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, 1957. Zbl0078.10004
  26. [26] I. Istrăţescu and V. Istrăţescu, A note on the Weyl's spectrum of an operator, Rev. Roumaine Math. Pures Appl. 15 (1970), 1445-1447. Zbl0209.15501
  27. [27] V. È. Kacnel'son [V. È. Katsnel'son], A conservative operator has norm equal to its spectral radius, Mat. Issled. 5 (3) (17) (1970), 186-189 (in Russian). Zbl0226.47002
  28. [28] S. Kantorovitz, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194-224. Zbl0127.07801
  29. [29] G. K. Leaf, A spectral theory for a class of linear operators, Pacific J. Math. 13 (1963), 141-155. Zbl0121.33502
  30. [30] B. Ja. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., 1964. 
  31. [31] T. Pytlik, Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51 (1987), 287-294. Zbl0632.46043
  32. [32] F. Riesz et B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Acad. Sci. Hongrie, Szeged, 1955. 
  33. [33] W. Rudin, Functional Analysis, McGraw-Hill, 1973. 
  34. [34] A. M. Sinclair, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. Zbl0242.46035
  35. [35] D. R. Smart, Conditionally convergent expansions, J. Austral. Math. Soc. 1 (1960), 319-333. Zbl0104.08901
  36. [36] B. G. Tillman, Vector-valued distributions and the spectral theorem for self-adjoint operators in Hilbert space, Bull. Amer. Math. Soc. 69 (1963), 67-71. 
  37. [37] I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128. Zbl0071.11503
  38. [38] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492. Zbl0268.47006
  39. [39] K. K. Warner, A note on a theorem of Weyl, Proc. Amer. Math. Soc. 23 (1969), 469-471. Zbl0192.47501
  40. [40] F. Wolf, Operators in Banach space which admit a generalized spectral decomposition, Nederl. Akad. Wetensch. Indag. Math. 19 (1957), 302-311. Zbl0077.31701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.