On a theorem of Gelfand and its local generalizations
Studia Mathematica (1997)
- Volume: 123, Issue: 2, page 185-194
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topDrissi, Driss. "On a theorem of Gelfand and its local generalizations." Studia Mathematica 123.2 (1997): 185-194. <http://eudml.org/doc/216387>.
@article{Drissi1997,
abstract = {In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = 1, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, $T_1,..., T_m$, on a Banach space X.},
author = {Drissi, Driss},
journal = {Studia Mathematica},
keywords = {locally power-bounded operator; local spectrum; local spectral radius; doubly power-bounded element of a Banach algebra; Bernstein inequality for multivariable functions; Gelfand’s theorem for commuting bounded operators},
language = {eng},
number = {2},
pages = {185-194},
title = {On a theorem of Gelfand and its local generalizations},
url = {http://eudml.org/doc/216387},
volume = {123},
year = {1997},
}
TY - JOUR
AU - Drissi, Driss
TI - On a theorem of Gelfand and its local generalizations
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 185
EP - 194
AB - In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = 1, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, $T_1,..., T_m$, on a Banach space X.
LA - eng
KW - locally power-bounded operator; local spectrum; local spectral radius; doubly power-bounded element of a Banach algebra; Bernstein inequality for multivariable functions; Gelfand’s theorem for commuting bounded operators
UR - http://eudml.org/doc/216387
ER -
References
top- [1] Allan G. R.: Sums of idempotents and a lemma of N. J. Kalton, Studia Math. 121 (1996), 185-192. Zbl0862.46029
- [2] Allan G. R. and Ransford T. J.: Power-dominated elements in a Banach algebra, ibid. 94 (1989), 63-79. Zbl0705.46021
- [3] Atzmon A.: Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144 (1980), 27-63. Zbl0449.47007
- [4] Aupetit B. and Drissi D.: Some spectral inequalities involving generalized scalar operators, Studia Math. 109 (1994), 51-66. Zbl0829.47002
- [5] Aupetit B. and Drissi D.: Local spectrum theory and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579. Zbl0861.47003
- [6] Batty C. J. K.: Asymptotic behaviour of semigroups of operators, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 35-52. Zbl0818.47034
- [7] Bernau S. J. and Huijsmans C. B.: On the positivity of the unit element in a normed lattice ordered algebra, Studia Math. 97 (1990), 143-149. Zbl0782.47031
- [8] Boas R. P.: Entire Functions, Academic Press, New York, 1954. Zbl0058.30201
- [9] Bohnenblust H. F. and Karlin S.: Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217-229. Zbl0067.35002
- [10] Brunel A. et Émilion R.: Sur les opérateurs positifs à moyennes bornées, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984),103-106. Zbl0582.47038
- [11] Colojoară I. and Foiaş C.: Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
- [12] Émilion R.: Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), 1-14.
- [13] Esterle J.: Quasimultipliers, representations of , and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity (Long Beach, Calif., 1981), Lecture Notes in Math. 975, Springer, 1983, 66-162.
- [14] Gelfand I.: Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. Zbl67.0407.02
- [15] Hille E.: On the theory of characters of groups and semi-groups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60. Zbl0061.25305
- [16] Hille E. and Phillips R. S.: Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.
- [17] Katznelson Y. and Tzafriri L.: On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. Zbl0611.47005
- [18] Laursen K. B. and Mbekhta M.: Operators with finite chain length, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. Zbl0849.47008
- [19] Levin B. Ja.: Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, 1964.
- [20] Lumer G.: Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75-85. Zbl0168.12103
- [21] Lumer G.: Spectral operators, Bounded groups and a theorem of Gelfand, Rev. Un. Mat. Argentina 25 (1971), 239-245. Zbl0324.46047
- [22] Lumer G. and Phillips R. S.: Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698. Zbl0101.09503
- [23] Lyubich Yu. and Zemánek J.: Precompactness in the uniform ergodic theory, Studia Math. 112 (1994), 89-97. Zbl0817.47014
- [24] Mbekhta M. and Vasilescu F.-H.: Uniformly ergodic multioperators, Trans. Amer. Math. Soc. 347 (1995), 1847-1854. Zbl0837.47007
- [25] Mbekhta M. and Zemánek J.: Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
- [26] Pedersen T. V.: Norms of powers in Banach algebras, Bull. London Math. Soc. 27 (1995), 305-316. Zbl0835.46045
- [27] Pytlik T.: Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51 (1987), 287-294. Zbl0632.46043
- [28] Shilov G. E.: On a theorem of I. M. Gel'fand and its generalizations, Dokl. Akad. Nauk SSSR 72 (1950), 641-644 (in Russian). Zbl0039.33601
- [29] Sinclair A. M.: The norm of a hermitian element in a Banach Algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. Zbl0242.46035
- [30] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417-424. Zbl0175.43902
- [31] Vũ Quôc Phóng, A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115 (1992), 1023-1024. Zbl0781.47003
- [32] Zemánek J.: Sur les itérations des opérateurs, Publ. Math. Univ. Pierre et Marie Curie, Séminaire d'Initiation à l'Analyse, 1994.
- [33] Zemánek J.: Sur les itérations des opérateurs, On the Gelfand-Hille theorems, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385. Zbl0822.47005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.