On a theorem of Gelfand and its local generalizations

Driss Drissi

Studia Mathematica (1997)

  • Volume: 123, Issue: 2, page 185-194
  • ISSN: 0039-3223

Abstract

top
In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = 1, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, T 1 , . . . , T m , on a Banach space X.

How to cite

top

Drissi, Driss. "On a theorem of Gelfand and its local generalizations." Studia Mathematica 123.2 (1997): 185-194. <http://eudml.org/doc/216387>.

@article{Drissi1997,
abstract = {In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = 1, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, $T_1,..., T_m$, on a Banach space X.},
author = {Drissi, Driss},
journal = {Studia Mathematica},
keywords = {locally power-bounded operator; local spectrum; local spectral radius; doubly power-bounded element of a Banach algebra; Bernstein inequality for multivariable functions; Gelfand’s theorem for commuting bounded operators},
language = {eng},
number = {2},
pages = {185-194},
title = {On a theorem of Gelfand and its local generalizations},
url = {http://eudml.org/doc/216387},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Drissi, Driss
TI - On a theorem of Gelfand and its local generalizations
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 185
EP - 194
AB - In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = 1, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, $T_1,..., T_m$, on a Banach space X.
LA - eng
KW - locally power-bounded operator; local spectrum; local spectral radius; doubly power-bounded element of a Banach algebra; Bernstein inequality for multivariable functions; Gelfand’s theorem for commuting bounded operators
UR - http://eudml.org/doc/216387
ER -

References

top
  1. [1] Allan G. R.: Sums of idempotents and a lemma of N. J. Kalton, Studia Math. 121 (1996), 185-192. Zbl0862.46029
  2. [2] Allan G. R. and Ransford T. J.: Power-dominated elements in a Banach algebra, ibid. 94 (1989), 63-79. Zbl0705.46021
  3. [3] Atzmon A.: Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144 (1980), 27-63. Zbl0449.47007
  4. [4] Aupetit B. and Drissi D.: Some spectral inequalities involving generalized scalar operators, Studia Math. 109 (1994), 51-66. Zbl0829.47002
  5. [5] Aupetit B. and Drissi D.: Local spectrum theory and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579. Zbl0861.47003
  6. [6] Batty C. J. K.: Asymptotic behaviour of semigroups of operators, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 35-52. Zbl0818.47034
  7. [7] Bernau S. J. and Huijsmans C. B.: On the positivity of the unit element in a normed lattice ordered algebra, Studia Math. 97 (1990), 143-149. Zbl0782.47031
  8. [8] Boas R. P.: Entire Functions, Academic Press, New York, 1954. Zbl0058.30201
  9. [9] Bohnenblust H. F. and Karlin S.: Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217-229. Zbl0067.35002
  10. [10] Brunel A. et Émilion R.: Sur les opérateurs positifs à moyennes bornées, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984),103-106. Zbl0582.47038
  11. [11] Colojoară I. and Foiaş C.: Theory of Generalized Spectral Operators, Gordon and Breach, 1968. 
  12. [12] Émilion R.: Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), 1-14. 
  13. [13] Esterle J.: Quasimultipliers, representations of H , and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity (Long Beach, Calif., 1981), Lecture Notes in Math. 975, Springer, 1983, 66-162. 
  14. [14] Gelfand I.: Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. Zbl67.0407.02
  15. [15] Hille E.: On the theory of characters of groups and semi-groups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60. Zbl0061.25305
  16. [16] Hille E. and Phillips R. S.: Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957. 
  17. [17] Katznelson Y. and Tzafriri L.: On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. Zbl0611.47005
  18. [18] Laursen K. B. and Mbekhta M.: Operators with finite chain length, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. Zbl0849.47008
  19. [19] Levin B. Ja.: Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, 1964. 
  20. [20] Lumer G.: Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75-85. Zbl0168.12103
  21. [21] Lumer G.: Spectral operators, Bounded groups and a theorem of Gelfand, Rev. Un. Mat. Argentina 25 (1971), 239-245. Zbl0324.46047
  22. [22] Lumer G. and Phillips R. S.: Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698. Zbl0101.09503
  23. [23] Lyubich Yu. and Zemánek J.: Precompactness in the uniform ergodic theory, Studia Math. 112 (1994), 89-97. Zbl0817.47014
  24. [24] Mbekhta M. and Vasilescu F.-H.: Uniformly ergodic multioperators, Trans. Amer. Math. Soc. 347 (1995), 1847-1854. Zbl0837.47007
  25. [25] Mbekhta M. and Zemánek J.: Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158. 
  26. [26] Pedersen T. V.: Norms of powers in Banach algebras, Bull. London Math. Soc. 27 (1995), 305-316. Zbl0835.46045
  27. [27] Pytlik T.: Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51 (1987), 287-294. Zbl0632.46043
  28. [28] Shilov G. E.: On a theorem of I. M. Gel'fand and its generalizations, Dokl. Akad. Nauk SSSR 72 (1950), 641-644 (in Russian). Zbl0039.33601
  29. [29] Sinclair A. M.: The norm of a hermitian element in a Banach Algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. Zbl0242.46035
  30. [30] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417-424. Zbl0175.43902
  31. [31] Vũ Quôc Phóng, A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115 (1992), 1023-1024. Zbl0781.47003
  32. [32] Zemánek J.: Sur les itérations des opérateurs, Publ. Math. Univ. Pierre et Marie Curie, Séminaire d'Initiation à l'Analyse, 1994. 
  33. [33] Zemánek J.: Sur les itérations des opérateurs, On the Gelfand-Hille theorems, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385. Zbl0822.47005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.