Compactness of Hardy-type integral operators in weighted Banach function spaces

David Edmunds; Petr Gurka; Luboš Pick

Studia Mathematica (1994)

  • Volume: 109, Issue: 1, page 73-90
  • ISSN: 0039-3223

Abstract

top
We consider a generalized Hardy operator T f ( x ) = ϕ ( x ) ʃ 0 x ψ f v . For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition = s u p R > 0 ϕ χ ( R , ) Y ψ χ ( 0 , R ) X ' < be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).

How to cite

top

Edmunds, David, Gurka, Petr, and Pick, Luboš. "Compactness of Hardy-type integral operators in weighted Banach function spaces." Studia Mathematica 109.1 (1994): 73-90. <http://eudml.org/doc/216062>.

@article{Edmunds1994,
abstract = {We consider a generalized Hardy operator $Tf(x) = ϕ(x) ʃ_\{0\}^\{x\} ψfv$. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition $ℬ = sup_\{R>0\} ∥ϕχ_\{(R,∞)\}∥_\{Y\}∥ψχ_\{(0,R)\}∥_\{X^\{\prime \}\} < ∞$ be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).},
author = {Edmunds, David, Gurka, Petr, Pick, Luboš},
journal = {Studia Mathematica},
keywords = {weighted Banach function space; Hardy-type operator; compact operator; Lorentz space; generalized Hardy operator; Muckenhoupt condition; compactness; finite rank operators; Lorentz spaces},
language = {eng},
number = {1},
pages = {73-90},
title = {Compactness of Hardy-type integral operators in weighted Banach function spaces},
url = {http://eudml.org/doc/216062},
volume = {109},
year = {1994},
}

TY - JOUR
AU - Edmunds, David
AU - Gurka, Petr
AU - Pick, Luboš
TI - Compactness of Hardy-type integral operators in weighted Banach function spaces
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 1
SP - 73
EP - 90
AB - We consider a generalized Hardy operator $Tf(x) = ϕ(x) ʃ_{0}^{x} ψfv$. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition $ℬ = sup_{R>0} ∥ϕχ_{(R,∞)}∥_{Y}∥ψχ_{(0,R)}∥_{X^{\prime }} < ∞$ be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).
LA - eng
KW - weighted Banach function space; Hardy-type operator; compact operator; Lorentz space; generalized Hardy operator; Muckenhoupt condition; compactness; finite rank operators; Lorentz spaces
UR - http://eudml.org/doc/216062
ER -

References

top
  1. [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, 1988. Zbl0647.46057
  2. [BER] E. I. Berezhnoǐ, Weighted inequalities of Hardy type in general ideal spaces, Soviet Math. Dokl. 43 (1991), 492-495. 
  3. [B] J. S. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. Zbl0402.26006
  4. [CHK] H.-M. Chung, R. A. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on L(p,q) spaces with weights, Indiana Univ. Math. J. 31 (1982), 109-120. Zbl0448.42014
  5. [EE] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987. Zbl0628.47017
  6. [EEH] D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. 38 (1988), 471-489. Zbl0658.47049
  7. [EH] W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. 54 (1987), 141-175. Zbl0591.46027
  8. [H] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-276. Zbl0181.40301
  9. [K] V. M. Kokilashvili, On Hardy's inequalities in weighted spaces, Soobshch. Akad. Nauk. Gruzin. SSR 96 (1979), 37-40 (in Russian). Zbl0434.26007
  10. [LP] Q. Lai and L. Pick, The Hardy operator, L , and BMO, J. London Math. Soc. (2) 48 (1993), 167-177. 
  11. [LUX] W. A. J. Luxemburg, Banach Function Spaces, thesis, Delft, 1955. 
  12. [LZ] W. A. J. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180. Zbl0106.30804
  13. [M] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985. 
  14. [MU] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38. Zbl0236.26015
  15. [OK] B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. & Tech., Harlow, 1990. Zbl0698.26007
  16. [S] E. T. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337. Zbl0538.47020
  17. [T] G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185. Zbl0218.26011
  18. [TO] G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. 21 (1969), 622-631. Zbl0188.12103

NotesEmbed ?

top

You must be logged in to post comments.