Compactness of Hardy-type integral operators in weighted Banach function spaces

David Edmunds; Petr Gurka; Luboš Pick

Studia Mathematica (1994)

  • Volume: 109, Issue: 1, page 73-90
  • ISSN: 0039-3223

Abstract

top
We consider a generalized Hardy operator T f ( x ) = ϕ ( x ) ʃ 0 x ψ f v . For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition = s u p R > 0 ϕ χ ( R , ) Y ψ χ ( 0 , R ) X ' < be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).

How to cite

top

Edmunds, David, Gurka, Petr, and Pick, Luboš. "Compactness of Hardy-type integral operators in weighted Banach function spaces." Studia Mathematica 109.1 (1994): 73-90. <http://eudml.org/doc/216062>.

@article{Edmunds1994,
abstract = {We consider a generalized Hardy operator $Tf(x) = ϕ(x) ʃ_\{0\}^\{x\} ψfv$. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition $ℬ = sup_\{R>0\} ∥ϕχ_\{(R,∞)\}∥_\{Y\}∥ψχ_\{(0,R)\}∥_\{X^\{\prime \}\} < ∞$ be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).},
author = {Edmunds, David, Gurka, Petr, Pick, Luboš},
journal = {Studia Mathematica},
keywords = {weighted Banach function space; Hardy-type operator; compact operator; Lorentz space; generalized Hardy operator; Muckenhoupt condition; compactness; finite rank operators; Lorentz spaces},
language = {eng},
number = {1},
pages = {73-90},
title = {Compactness of Hardy-type integral operators in weighted Banach function spaces},
url = {http://eudml.org/doc/216062},
volume = {109},
year = {1994},
}

TY - JOUR
AU - Edmunds, David
AU - Gurka, Petr
AU - Pick, Luboš
TI - Compactness of Hardy-type integral operators in weighted Banach function spaces
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 1
SP - 73
EP - 90
AB - We consider a generalized Hardy operator $Tf(x) = ϕ(x) ʃ_{0}^{x} ψfv$. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition $ℬ = sup_{R>0} ∥ϕχ_{(R,∞)}∥_{Y}∥ψχ_{(0,R)}∥_{X^{\prime }} < ∞$ be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).
LA - eng
KW - weighted Banach function space; Hardy-type operator; compact operator; Lorentz space; generalized Hardy operator; Muckenhoupt condition; compactness; finite rank operators; Lorentz spaces
UR - http://eudml.org/doc/216062
ER -

References

top
  1. [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, 1988. Zbl0647.46057
  2. [BER] E. I. Berezhnoǐ, Weighted inequalities of Hardy type in general ideal spaces, Soviet Math. Dokl. 43 (1991), 492-495. 
  3. [B] J. S. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. Zbl0402.26006
  4. [CHK] H.-M. Chung, R. A. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on L(p,q) spaces with weights, Indiana Univ. Math. J. 31 (1982), 109-120. Zbl0448.42014
  5. [EE] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987. Zbl0628.47017
  6. [EEH] D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. 38 (1988), 471-489. Zbl0658.47049
  7. [EH] W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. 54 (1987), 141-175. Zbl0591.46027
  8. [H] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-276. Zbl0181.40301
  9. [K] V. M. Kokilashvili, On Hardy's inequalities in weighted spaces, Soobshch. Akad. Nauk. Gruzin. SSR 96 (1979), 37-40 (in Russian). Zbl0434.26007
  10. [LP] Q. Lai and L. Pick, The Hardy operator, L , and BMO, J. London Math. Soc. (2) 48 (1993), 167-177. 
  11. [LUX] W. A. J. Luxemburg, Banach Function Spaces, thesis, Delft, 1955. 
  12. [LZ] W. A. J. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180. Zbl0106.30804
  13. [M] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985. 
  14. [MU] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38. Zbl0236.26015
  15. [OK] B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. & Tech., Harlow, 1990. Zbl0698.26007
  16. [S] E. T. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337. Zbl0538.47020
  17. [T] G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185. Zbl0218.26011
  18. [TO] G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. 21 (1969), 622-631. Zbl0188.12103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.