Recent developments concerning entropy and approximation numbers

Edmunds, David E.

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Prometheus Publishing House(Praha), page 33-76

How to cite

top

Edmunds, David E.. "Recent developments concerning entropy and approximation numbers." Nonlinear Analysis, Function Spaces and Applications. Praha: Prometheus Publishing House, 1994. 33-76. <http://eudml.org/doc/220329>.

@inProceedings{Edmunds1994,
author = {Edmunds, David E.},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Nonlinear analysis; Function spaces; Proceedings; Spring school; Prague (Czech Republic)},
location = {Praha},
pages = {33-76},
publisher = {Prometheus Publishing House},
title = {Recent developments concerning entropy and approximation numbers},
url = {http://eudml.org/doc/220329},
year = {1994},
}

TY - CLSWK
AU - Edmunds, David E.
TI - Recent developments concerning entropy and approximation numbers
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1994
CY - Praha
PB - Prometheus Publishing House
SP - 33
EP - 76
KW - Nonlinear analysis; Function spaces; Proceedings; Spring school; Prague (Czech Republic)
UR - http://eudml.org/doc/220329
ER -

References

top
  1. Adams, D.R., A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385–398. (1988) Zbl0672.31008MR0960950
  2. Agmon, S., On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119–147. (1962) Zbl0109.32701MR0147774
  3. Agmon, S., Douglis, A., Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623–727. (1959) Zbl0093.10401MR0125307
  4. Bennett, C., Rudnick, K., On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980), 1–72. (1980) Zbl0456.46028MR0576995
  5. Bennett, C., Sharpley, R., Interpolation of operators, Academic Press, New York, 1988. (1988) Zbl0647.46057MR0928802
  6. Birman, M.S., Karadzhov, G.E., Solomyak, M.Z., Boundedness conditions and spectrum estimates for the operators b ( X ) a ( D ) and their analogs, Adv. in Soviet Math. 7 (1991), 85–106. (1991) Zbl0768.47025MR1306510
  7. Birman, M.S., Solomyak, M.Z., Piecewise polynomial approximations of functions of the classes W p α , Mat. Sb. 73 (1967), 331–355. (1967) MR0217487
  8. Birman, M.S., Solomyak, M.Z., Spectral asymptotics of non-smooth elliptic operators, I, Trans. Moscow Math. Soc. 27 (1972), 1–52. (1972) MR1157648
  9. Birman, M.S., Solomyak, M.Z., Spectral asymptotics of non-smooth elliptic operators, II, Trans. Moscow Math. Soc. 28 (1973), 1–32. (1973) MR1157648
  10. Birman, M.S., Solomyak, M.Z., Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory, 10th Math. School Kiev 1974, pp. 5–189. Zbl0426.46020MR0562305
  11. Birman, M.S., Solomyak, M.Z., The asymptotics of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols, I, II, Vestnik Leningrad Univ. Mat. 13 (1977), 13–21. (Russian) (1977) 
  12. Birman, M.S., Solomyak, M.Z., Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, Adv. in Soviet Math. 7 (1991), 1–55. (1991) MR1306507
  13. Bourgain, J., Pajor, A., Szarek, S.J., Tomczak, N. -Jaegerman, On the duality problem for entropy numbers of operators, Geometric aspects of functional analysis (1987–88), Lecture Notes in Mathematics, Vol. 1376, Springer, Berlin, 1989, pp. 50–63. (1989) MR1008716
  14. Carl, B., Entropy numbers, s -numbers and eigenvalue problems, J. Funct. Anal. 41 (1981), 290–306. (1981) Zbl0466.41008MR0619953
  15. Carl, B., Entropy numbers of embedding maps between Besov spaces with an application to eigenvalue problems, Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 63–70. (1981) Zbl0508.47041MR0636064
  16. Carl, B., Stephani, I., Entropy, compactness and the approximation of operators, Cambridge University Press, Cambridge, 1990. (1990) Zbl0705.47017MR1098497
  17. Carl, B., Triebel, H., Inequalities between eigenvalues, entropy numbers and related quantities in Banach spaces, Math. Ann. 251 (1980), 129–133. (1980) MR0585959
  18. Cobos, F., Edmunds, D.E., Clarkson’s inequalities, Besov spaces and Triebel–Sobolev spaces, Z. Anal. Anwendungen 7 (1988), 229–232. (1988) Zbl0663.46026MR0951121
  19. Cobos, F., Edmunds, D.E., Potter, A.J.B., Real interpolation and compact linear operators, J. Funct. Anal. 88 (1990), 351–365. (1990) Zbl0704.46049MR1038446
  20. Cobos, F., Fernandez, D.L., On interpolation of compact operators, Ark. Mat. 27 (1989), 211–217. (1989) Zbl0691.46047MR1022277
  21. Cwikel, M., Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. 106 (1977), 93–100. (1977) Zbl0362.47006MR0473576
  22. Cwikel, M., Real and complex interpolation and extrapolation of compact operators, Technion, Haifa, 1990, preprint. (1990) MR1150590
  23. Edmunds, D.E., Evans, W.D., Spectral theory and differential operators, Oxford University Press, Oxford, 1987. (1987) Zbl0628.47017MR0929030
  24. Edmunds, D.E., Evans, W.D., Harris, D.J., Approximation numbers of certain Volterra integral operators, J. London Math. Soc. 37 (1988), no. 2, 471–489. (1988) Zbl0658.47049MR0939123
  25. Edmunds, D.E., Gurka, P., Pick, L., Compactness of Hardy-type integral operators in weighted Banach function spaces, Studia Math. 109 (1994), 73–90. (1994) Zbl0821.46036MR1267713
  26. Edmunds, D.E., Gurka, P., Opic, B., Double exponential integrability of convolution operators in generalised Lorentz–Zygmund spaces, to appear. MR1336431
  27. Edmunds, D.E., Ilyin, A.A., On some multiplicative inequalities and approximation numbers, Quart. J. Math. Oxford 45 (1994), 159–179. (1994) Zbl0818.46027MR1280691
  28. Edmunds, D.E., Ilyin, A.A., Approximation numbers of embeddings of Sobolev spaces, to appear. Zbl0841.46022MR1376290
  29. Edmunds, D.E., Krbec, M., Two limiting cases of Sobolev imbeddings, to appear. Zbl0835.46027MR1331250
  30. Edmunds, D.E., Stepanov, V.D., The measure of non-compactness and approximation numbers of certain Volterra integral operators, Math. Ann. 298 (1994), 41–66. (1994) Zbl0788.45013MR1252816
  31. Edmunds, D.E., Triebel, H., Entropy numbers and approximation numbers in function spaces, Proc. London Math. Soc. 58 (1989), no. 3, 137–152. (1989) Zbl0629.46034MR0969551
  32. Edmunds, D.E., Triebel, H., Entropy numbers and approximation numbers in function spaces, II, Proc. London Math. Soc. 64 (1992), no. 3, 153–169. (1992) Zbl0778.46022MR1132858
  33. Edmunds, D.E., Triebel, H., Eigenvalue distributions of some degenerate elliptic operators: an approach via entropy numbers, Math. Ann. 299 (1994), 311–340. (1994) Zbl0804.35097MR1275771
  34. Edmunds, D.E., Triebel, H., Logarithmic Sobolev spaces and their applications to spectral theory, Proc. London Math. Soc., to appear. Zbl0835.46028MR1337470
  35. Edmunds, D.E., Triebel, H., Function spaces, entropy numbers, differential operators, (forthcoming book). Zbl1143.46001MR1410258
  36. Edmunds, D.E., Tylli, H.-O., On the entropy numbers of an operator and its adjoint, Math. Nachr. 126 (1986), 231–239. (1986) Zbl0625.47015MR0846577
  37. Edmunds, D.E., Tylli, H.-O., Entropy numbers of tensor products of operators, Ark. Mat. 31 (1993), 247–274. (1993) Zbl1047.47502MR1263554
  38. Frazier, M., Jawerth, B., Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777–799. (1985) Zbl0551.46018MR0808825
  39. Fusco, N., Lions, P.L., Sbordone, C., Some remarks on Sobolev imbeddings in borderline cases, Preprint No. 25, Università degli Studi di Napoli ”Federico II”, 1993, pp. 7. (1993) 
  40. Franke, J., Runst, Th., Regular elliptic boundary value problems in Besov–Triebel–Lizorkin spaces, to appear. Zbl0843.35026MR1349041
  41. Glushin, E.D., Norms of random matrices and diameter of finite-dimensional sets, Mat. Sb. 120 (1983), 180–189. (Russian) (1983) MR0687610
  42. Haroske, D., Approximation numbers in weighted function spaces, to appear. 
  43. Haroske, D., Triebel, H., Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators I, Math. Nachr. 167 (1994), 131–156. (1994) Zbl0829.46019MR1285311
  44. Haroske, D., Triebel, H., Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators II, Math. Nachr. 168 (1994), 109–137. (1994) Zbl0829.46020MR1282635
  45. König, H., Eigenvalue distributions of compact operators, Birkhäuser, Basel, 1986. (1986) MR0889455
  46. Lieb, E.W., Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc. 82 (1976), 751–753. (1976) Zbl0329.35018MR0407909
  47. Linde, R., s -numbers of diagonal operators and Besov embeddings, Proc. 13th Winter School, Suppl. Rend. Circ. Mat. Palermo 2 (1986), 83–110. (1986) MR0894275
  48. Pietsch, A., Operator ideals, North-Holland, Amsterdam, 1980. (1980) Zbl0455.47032MR0582655
  49. Pietsch, A., Eigenvalues and s -numbers, Cambridge University Press, Cambridge, 1987. (1987) Zbl0615.47019MR0890520
  50. Rosenbljum, G.V., The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl. 13 (1972), 245–249. (1972) 
  51. Rosenbljum, G.V., Distribution of the discrete spectrum of singular differential operators, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1976), 75–86. (Russian) (1976) MR0430557
  52. Schechter, M., Spectra of partial differential operators (2nd edition), North Holland, Amsterdam, 1986. (1986) MR0869254
  53. Sickel, W., Triebel, H., Hölder inequalities and sharp embeddings in function spaces of B p q s and F p q s type, to appear. 
  54. Simon, B., Analysis with weak trace ideals and the number of bound states of Schrödinger operators, Trans. Amer. Math. Soc. 224 (1976), 367–380. (1976) Zbl0348.47017MR0423128
  55. Simon, B., Trace ideals and their applications, Cambridge University Press, Cambridge, 1979. (1979) Zbl0423.47001MR0541149
  56. Solomyak, M.Z., Piecewise polynomial approximation of functions from H ( ( 0 , 1 ) d ) , 2 = d , and applications to the spectral theory of the Schrödinger operator, Israel J. Math. 86 (1994), 253–275. (1994) MR1276138
  57. Solomyak, M.Z., Piecewise polynomial approximation of functions from Sobolev spaces, revisited, to appear. Zbl0885.46033MR1423362
  58. Solomyak, M.Z., Two-sided estimates on singular values for a class of integral operators on the semi-axis, to appear. Zbl0817.47024
  59. Strichartz, R.S., A note on Trudinger’s extension of Sobolev’s inequalities, Indiana Univ. Math. J. 21 (1972), 841–8. (1972) Zbl0241.46028MR0293389
  60. Tashkian, G.M., The classical formula of the asymptotics of the spectrum of elliptic equations, degenerate at the boundary of the domain, Mat. Zametki 30 (1981), no. 6, 871–880. (Russian) (1981) MR0641661
  61. Triebel, H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978. (1978) Zbl0387.46033MR0503903
  62. Triebel, H., Theory of function spaces, Birkhäuser, Basel, 1983. (1983) Zbl0546.46028MR0781540
  63. Triebel, H., Theory of function spaces II, Birkhäuser, Basel, 1992. (1992) Zbl0763.46025MR1163193
  64. Triebel, H., Approximation numbers and entropy numbers of embeddings of fractional Besov–Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. 66 (1993), 589–618. (1993) Zbl0792.46024MR1207550
  65. Triebel, H., Relations between approximation numbers and entropy numbers, to appear in J. Approx. Theory. Zbl0811.47020MR1284581
  66. Triebel, H., A localization property of B p q s and F p q s spaces, Studia Math. 109 (1994), 183–195. (1994) MR1269775
  67. Triebel, H., Winkelvoss, H., Intrinsic atomic characterizations of function spaces on domains, to appear. Zbl0843.46022
  68. Trudinger, N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. (1967) Zbl0163.36402MR0216286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.