On certain nonstandard Calderón-Zygmund operators

Steve Hofmann

Studia Mathematica (1994)

  • Volume: 109, Issue: 2, page 105-131
  • ISSN: 0039-3223

Abstract

top
We formulate a version of the T1 theorem which enables us to treat singular integrals whose kernels need not satisfy the usual smoothness conditions. We also prove a weighted version. As an application of the general theory, we consider a class of multilinear singular integrals in n related to the first Calderón commutator, but with a kernel which is far less regular.

How to cite

top

Hofmann, Steve. "On certain nonstandard Calderón-Zygmund operators." Studia Mathematica 109.2 (1994): 105-131. <http://eudml.org/doc/216064>.

@article{Hofmann1994,
abstract = {We formulate a version of the T1 theorem which enables us to treat singular integrals whose kernels need not satisfy the usual smoothness conditions. We also prove a weighted version. As an application of the general theory, we consider a class of multilinear singular integrals in $ℝ^n$ related to the first Calderón commutator, but with a kernel which is far less regular.},
author = {Hofmann, Steve},
journal = {Studia Mathematica},
keywords = {nonstandard Calderón-Zygmund operators; Muckenhoupt class ; variant of the theorem; Calderón commutator; rough operators},
language = {eng},
number = {2},
pages = {105-131},
title = {On certain nonstandard Calderón-Zygmund operators},
url = {http://eudml.org/doc/216064},
volume = {109},
year = {1994},
}

TY - JOUR
AU - Hofmann, Steve
TI - On certain nonstandard Calderón-Zygmund operators
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 2
SP - 105
EP - 131
AB - We formulate a version of the T1 theorem which enables us to treat singular integrals whose kernels need not satisfy the usual smoothness conditions. We also prove a weighted version. As an application of the general theory, we consider a class of multilinear singular integrals in $ℝ^n$ related to the first Calderón commutator, but with a kernel which is far less regular.
LA - eng
KW - nonstandard Calderón-Zygmund operators; Muckenhoupt class ; variant of the theorem; Calderón commutator; rough operators
UR - http://eudml.org/doc/216064
ER -

References

top
  1. [BC] B. Bajsanski and R. Coifman, On singular integrals, in: Proc. Sympos. Pure Math. 10, Amer. Math. Soc., Providence, 1967, 1-17. 
  2. [Ca] A. P. Calderón, Commutators of singular integrals, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. Zbl0151.16901
  3. [CZ] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309. Zbl0072.11501
  4. [CC] C. P. Calderón, On commutators of singular integrals, Studia Math. 53 (1975), 139-174. Zbl0315.44006
  5. [CS] A. Carbery and A. Seeger, Conditionally convergent series of linear operators on L p -spaces and L p -estimates for pseudodifferential operators, Proc. London Math. Soc. 57 (1988), 481-510. Zbl0681.35091
  6. [C] M. Christ, Weak type (1,1) bounds for rough operators, Ann. of Math. 128 (1988), 19-42. Zbl0666.47027
  7. [C2] M. Christ, Hilbert transforms along curves I. Nilpotent groups, ibid. 122 (1985), 575-596. Zbl0593.43011
  8. [Co] J. Cohen, A sharp estimate for a multilinear singular integral in n , Indiana Univ. Math. J. 30 (1981), 693-702. Zbl0596.42004
  9. [CDMS] R. Coifman, G. David, Y. Meyer and S. Semmes, ω-Calderón-Zygmund operators, in: Proc. Conf. Harmonic Analysis and PDE, El Escorial 1987, Lecture Notes in Math. 1384, Springer, Berlin, 1989, 132-145. 
  10. [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. Zbl0326.32011
  11. [DJ] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, ibid. 120 (1984), 371-397. Zbl0567.47025
  12. [DJS] G. David, J.-L. Journé and S. Semmes, Calderón-Zygmund operators, para-accretive functions and interpolation, preprint. Zbl0604.42014
  13. [DR] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. Zbl0568.42012
  14. [GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985. 
  15. [HH] Y. S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear. Zbl0779.42010
  16. [HS] Y. S. Han and E. T. Sawyer, Para-accretive functions, the weak boundedness property, and interpolation, Rev. Mat. Iberoamericana, to appear. 
  17. [H] S. Hofmann, Weighted inequalities for commutators of rough singular integrals, Indiana Univ. Math. J. 39 (1990), 1275-1304. Zbl0708.42012
  18. [H2] S. Hofmann, Singular integrals of Calderón-type in n , and BMO, Rev. Mat. Iberoamericana, to appear. 
  19. [Hu] Y. Hu, An estimate for multilinear singular integrals on n , Beijing Daxue Xuebao 1985 (3), 19-26 (in Chinese, with English summary reprinted in MR 87h:42026). 
  20. [J] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators, and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer, Berlin, 1983. Zbl0508.42021
  21. [M] Y. Meyer, La continuité des opérateurs définis par des intégrales singulières, Monografías de Matemáticas V. 4, Univ. Autónoma de Madrid. Zbl0547.47032
  22. [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.