A variant sharp estimate for multilinear singular integral operators

Guoen Hu; Dachun Yang

Studia Mathematica (2000)

  • Volume: 141, Issue: 1, page 25-22
  • ISSN: 0039-3223

Abstract

top
We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain L l o g + L type estimates for these multilinear operators.

How to cite

top

Hu, Guoen, and Yang, Dachun. "A variant sharp estimate for multilinear singular integral operators." Studia Mathematica 141.1 (2000): 25-22. <http://eudml.org/doc/216771>.

@article{Hu2000,
abstract = {We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain $Llog^\{+\}L$ type estimates for these multilinear operators.},
author = {Hu, Guoen, Yang, Dachun},
journal = {Studia Mathematica},
keywords = {multilinear singular integral operator; BMO; weighted norm inequality; sharp estimate; weighted norm; Hardy-Littlewood maximal function},
language = {eng},
number = {1},
pages = {25-22},
title = {A variant sharp estimate for multilinear singular integral operators},
url = {http://eudml.org/doc/216771},
volume = {141},
year = {2000},
}

TY - JOUR
AU - Hu, Guoen
AU - Yang, Dachun
TI - A variant sharp estimate for multilinear singular integral operators
JO - Studia Mathematica
PY - 2000
VL - 141
IS - 1
SP - 25
EP - 22
AB - We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain $Llog^{+}L$ type estimates for these multilinear operators.
LA - eng
KW - multilinear singular integral operator; BMO; weighted norm inequality; sharp estimate; weighted norm; Hardy-Littlewood maximal function
UR - http://eudml.org/doc/216771
ER -

References

top
  1. [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. 
  2. [2] J. Cohen, A sharp estimate for a multilinear singular integral on n , Indiana Univ. Math. J. 30 (1981), 693-702. Zbl0596.42004
  3. [3] J. Cohen and J. Gosselin, On multilinear singular integral operators on n , Studia Math. 72 (1982), 199-223. Zbl0427.42005
  4. [4] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral operators, Illinois J. Math. 30 (1986), 445-464. Zbl0619.42012
  5. [5] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. Zbl0326.32011
  6. [6] A. Córdoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-101. 
  7. [7] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, NJ, 1982. Zbl0508.42025
  8. [8] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 16, North-Holland, Amsterdam, 1985. 
  9. [9] S. Hofmann, On certain nonstandard Calderón-Zygmund operators, Studia Math. 109 (1994), 105-131. Zbl0826.42012
  10. [10] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. 49 (1994), 296-308. Zbl0797.42010
  11. [11] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163-185. Zbl0831.42010

NotesEmbed ?

top

You must be logged in to post comments.