A variant sharp estimate for multilinear singular integral operators

Guoen Hu; Dachun Yang

Studia Mathematica (2000)

  • Volume: 141, Issue: 1, page 25-22
  • ISSN: 0039-3223

Abstract

top
We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain L l o g + L type estimates for these multilinear operators.

How to cite

top

Hu, Guoen, and Yang, Dachun. "A variant sharp estimate for multilinear singular integral operators." Studia Mathematica 141.1 (2000): 25-22. <http://eudml.org/doc/216771>.

@article{Hu2000,
abstract = {We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain $Llog^\{+\}L$ type estimates for these multilinear operators.},
author = {Hu, Guoen, Yang, Dachun},
journal = {Studia Mathematica},
keywords = {multilinear singular integral operator; BMO; weighted norm inequality; sharp estimate; weighted norm; Hardy-Littlewood maximal function},
language = {eng},
number = {1},
pages = {25-22},
title = {A variant sharp estimate for multilinear singular integral operators},
url = {http://eudml.org/doc/216771},
volume = {141},
year = {2000},
}

TY - JOUR
AU - Hu, Guoen
AU - Yang, Dachun
TI - A variant sharp estimate for multilinear singular integral operators
JO - Studia Mathematica
PY - 2000
VL - 141
IS - 1
SP - 25
EP - 22
AB - We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain $Llog^{+}L$ type estimates for these multilinear operators.
LA - eng
KW - multilinear singular integral operator; BMO; weighted norm inequality; sharp estimate; weighted norm; Hardy-Littlewood maximal function
UR - http://eudml.org/doc/216771
ER -

References

top
  1. [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. 
  2. [2] J. Cohen, A sharp estimate for a multilinear singular integral on n , Indiana Univ. Math. J. 30 (1981), 693-702. Zbl0596.42004
  3. [3] J. Cohen and J. Gosselin, On multilinear singular integral operators on n , Studia Math. 72 (1982), 199-223. Zbl0427.42005
  4. [4] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral operators, Illinois J. Math. 30 (1986), 445-464. Zbl0619.42012
  5. [5] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. Zbl0326.32011
  6. [6] A. Córdoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-101. 
  7. [7] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, NJ, 1982. Zbl0508.42025
  8. [8] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 16, North-Holland, Amsterdam, 1985. 
  9. [9] S. Hofmann, On certain nonstandard Calderón-Zygmund operators, Studia Math. 109 (1994), 105-131. Zbl0826.42012
  10. [10] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. 49 (1994), 296-308. Zbl0797.42010
  11. [11] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163-185. Zbl0831.42010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.