A localization property for and spaces
Studia Mathematica (1994)
- Volume: 109, Issue: 2, page 183-195
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topTriebel, Hans. "A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces." Studia Mathematica 109.2 (1994): 183-195. <http://eudml.org/doc/216068>.
@article{Triebel1994,
abstract = {Let $f^\{j\} = ∑_\{k\} a_\{k\} f(2^\{j+1\}x - 2k)$, where the sum is taken over the lattice of all points k in $ℝ^n$ having integer-valued components, j∈ℕ and $a_k ∈ ℂ$. Let $A^\{s\}_\{pq\}$ be either $B^\{s\}_\{pq\}$ or $F^\{s\}_\{pq\}$ (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on $ℝ^n.$ The aim of the paper is to clarify under what conditions $∥f^\{j\} | A^\{s\}_\{pq\}∥$ is equivalent to $2^\{j(s-n/p)\} (∑_\{k\} |a_k|^p)^\{1/p\} ∥f | A^\{s\}_\{pq\}∥$.},
author = {Triebel, Hans},
journal = {Studia Mathematica},
keywords = {localization property},
language = {eng},
number = {2},
pages = {183-195},
title = {A localization property for $B^\{s\}_\{pq\}$ and $F^\{s\}_\{pq\}$ spaces},
url = {http://eudml.org/doc/216068},
volume = {109},
year = {1994},
}
TY - JOUR
AU - Triebel, Hans
TI - A localization property for $B^{s}_{pq}$ and $F^{s}_{pq}$ spaces
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 2
SP - 183
EP - 195
AB - Let $f^{j} = ∑_{k} a_{k} f(2^{j+1}x - 2k)$, where the sum is taken over the lattice of all points k in $ℝ^n$ having integer-valued components, j∈ℕ and $a_k ∈ ℂ$. Let $A^{s}_{pq}$ be either $B^{s}_{pq}$ or $F^{s}_{pq}$ (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on $ℝ^n.$ The aim of the paper is to clarify under what conditions $∥f^{j} | A^{s}_{pq}∥$ is equivalent to $2^{j(s-n/p)} (∑_{k} |a_k|^p)^{1/p} ∥f | A^{s}_{pq}∥$.
LA - eng
KW - localization property
UR - http://eudml.org/doc/216068
ER -
References
top- [1] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992.
- [2] D. E. Edmunds and H. Triebel, Eigenvalue distributions of some degenerate elliptic operators: an approach via entropy numbers, Math. Ann., to appear. Zbl0804.35097
- [3] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. Zbl0551.46018
- [4] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
- [5] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, 1991. Zbl0757.42006
- [6] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of and type, submitted.
- [7] R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 442 (1991). Zbl0737.47041
- [8] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
- [9] H. Triebel, Theory of Function Spaces, II, Birkhäuser, Basel, 1992.
- [10] H. Triebel, Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. 66 (1993), 589-618. Zbl0792.46024
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.