Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces

J. García-Cuerva; K. Kazarian

Studia Mathematica (1994)

  • Volume: 109, Issue: 3, page 255-276
  • ISSN: 0039-3223

Abstract

top
We study sufficient conditions on the weight w, in terms of membership in the A p classes, for the spline wavelet systems to be unconditional bases of the weighted space H p ( w ) . The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.

How to cite

top

García-Cuerva, J., and Kazarian, K.. "Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces." Studia Mathematica 109.3 (1994): 255-276. <http://eudml.org/doc/216073>.

@article{García1994,
abstract = {We study sufficient conditions on the weight w, in terms of membership in the $A_p$ classes, for the spline wavelet systems to be unconditional bases of the weighted space $H^p(w)$. The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.},
author = {García-Cuerva, J., Kazarian, K.},
journal = {Studia Mathematica},
keywords = {wavelets; splines; $H^p$ spaces; $A_p$ weights; Schauder and unconditional bases; Calderón-Zygmund operators; weighted Hardy spaces; unconditional basis; radial maximal function; -spline wavelets; Haar basis; dyadic spaces},
language = {eng},
number = {3},
pages = {255-276},
title = {Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces},
url = {http://eudml.org/doc/216073},
volume = {109},
year = {1994},
}

TY - JOUR
AU - García-Cuerva, J.
AU - Kazarian, K.
TI - Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 3
SP - 255
EP - 276
AB - We study sufficient conditions on the weight w, in terms of membership in the $A_p$ classes, for the spline wavelet systems to be unconditional bases of the weighted space $H^p(w)$. The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
LA - eng
KW - wavelets; splines; $H^p$ spaces; $A_p$ weights; Schauder and unconditional bases; Calderón-Zygmund operators; weighted Hardy spaces; unconditional basis; radial maximal function; -spline wavelets; Haar basis; dyadic spaces
UR - http://eudml.org/doc/216073
ER -

References

top
  1. [B] S. Banach, Théorie des opérations linéaires, Warszawa, 1932; English transl.: Elsevier, 1987. Zbl0005.20901
  2. [Bo] S. V. Bochkarev, Existence of bases in the space of analytic functions and some properties of the Franklin system, Mat. Sb. 98 (1974), 3-18. 
  3. [Ca] L. Carleson, An explicit unconditional basis in H 1 , Bull. Sci. Math. 104 (1980), 405-416. Zbl0495.46020
  4. [C-C] A. Chang and Z. Ciesielski, Spline characterizations of H 1 , Studia Math. 75 (1983), 183-192. 
  5. [C1] Z. Ciesielski, Properties of the orthonormal Franklin system, ibid. 23 (1963), 141-157. Zbl0113.27204
  6. [C2] Z. Ciesielski, Properties of the orthonormal Franklin system II, ibid. 27 (1966), 289-323. Zbl0148.04702
  7. [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid. 51 (1974), 241-250. Zbl0291.44007
  8. [D] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, 1991. 
  9. [G] J. García-Cuerva, Weighted H p spaces, Dissertationes Math. 162 (1979). 
  10. [G1] J. García-Cuerva, Extrapolation of weighted norm inequalities from endpoint spaces to Banach lattices, J. London Math. Soc. (2) 46 (1992), 280-294. Zbl0770.42012
  11. [G-R] J. García-Cuerva and J.-L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 114, 1985. 
  12. [H-M-W] R. A. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-252. Zbl0262.44004
  13. [J-N] R. Johnson and C. J. Neugebauer, Homeomorphisms preserving A p , Rev. Mat. Iberoamericana 3 (1987), 249-273. 
  14. [K] K. S. Kazarian, On bases and unconditional bases in the spaces L p ( d μ ) , 1 ≤ p < ∞ , Studia Math. 71 (1982), 227-249. Zbl0502.46009
  15. [Ma] S. G. Mallat, Multiresolution approximation and wavelet orthonormal bases of L 2 ( ) , Trans. Amer. Math. Soc. 315 (1989), 69-87. 
  16. [Mau] B. Maurey, Isomorphismes entre espaces H 1 , Acta Math. 145 (1980), 79-120. 
  17. [Me] Y. Meyer, Ondelettes et Opérateurs, Vols. I and II, Hermann, Paris, 1990. 
  18. [Mu] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
  19. [S-S] P. Sjölin and J. O. Strömberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983), 111-125. Zbl0519.46058
  20. [St] J. O. Strömberg, A modified Franklin system and higher order spline systems on n as unconditional bases for Hardy spaces, in: Proc. Conf. in Honor of Antoni Zygmund, W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones (eds.), Wadsworth, 1981, 475-493. 
  21. [S-T] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989. 
  22. [S-W] J. O. Strömberg and R. Wheeden, Fractional integrals on weighted H p and L p spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321. 
  23. [W] P. Wojtaszczyk, The Franklin system is an unconditional basis in H 1 , Ark. Mat. 20 (1982), 293-300. Zbl0534.46038
  24. [W1] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, 1991. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.