Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces

J. García-Cuerva; K. Kazarian

Studia Mathematica (1994)

  • Volume: 109, Issue: 3, page 255-276
  • ISSN: 0039-3223

Abstract

top
We study sufficient conditions on the weight w, in terms of membership in the A p classes, for the spline wavelet systems to be unconditional bases of the weighted space H p ( w ) . The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.

How to cite

top

García-Cuerva, J., and Kazarian, K.. "Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces." Studia Mathematica 109.3 (1994): 255-276. <http://eudml.org/doc/216073>.

@article{García1994,
abstract = {We study sufficient conditions on the weight w, in terms of membership in the $A_p$ classes, for the spline wavelet systems to be unconditional bases of the weighted space $H^p(w)$. The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.},
author = {García-Cuerva, J., Kazarian, K.},
journal = {Studia Mathematica},
keywords = {wavelets; splines; $H^p$ spaces; $A_p$ weights; Schauder and unconditional bases; Calderón-Zygmund operators; weighted Hardy spaces; unconditional basis; radial maximal function; -spline wavelets; Haar basis; dyadic spaces},
language = {eng},
number = {3},
pages = {255-276},
title = {Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces},
url = {http://eudml.org/doc/216073},
volume = {109},
year = {1994},
}

TY - JOUR
AU - García-Cuerva, J.
AU - Kazarian, K.
TI - Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 3
SP - 255
EP - 276
AB - We study sufficient conditions on the weight w, in terms of membership in the $A_p$ classes, for the spline wavelet systems to be unconditional bases of the weighted space $H^p(w)$. The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
LA - eng
KW - wavelets; splines; $H^p$ spaces; $A_p$ weights; Schauder and unconditional bases; Calderón-Zygmund operators; weighted Hardy spaces; unconditional basis; radial maximal function; -spline wavelets; Haar basis; dyadic spaces
UR - http://eudml.org/doc/216073
ER -

References

top
  1. [B] S. Banach, Théorie des opérations linéaires, Warszawa, 1932; English transl.: Elsevier, 1987. Zbl0005.20901
  2. [Bo] S. V. Bochkarev, Existence of bases in the space of analytic functions and some properties of the Franklin system, Mat. Sb. 98 (1974), 3-18. 
  3. [Ca] L. Carleson, An explicit unconditional basis in H 1 , Bull. Sci. Math. 104 (1980), 405-416. Zbl0495.46020
  4. [C-C] A. Chang and Z. Ciesielski, Spline characterizations of H 1 , Studia Math. 75 (1983), 183-192. 
  5. [C1] Z. Ciesielski, Properties of the orthonormal Franklin system, ibid. 23 (1963), 141-157. Zbl0113.27204
  6. [C2] Z. Ciesielski, Properties of the orthonormal Franklin system II, ibid. 27 (1966), 289-323. Zbl0148.04702
  7. [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid. 51 (1974), 241-250. Zbl0291.44007
  8. [D] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, 1991. 
  9. [G] J. García-Cuerva, Weighted H p spaces, Dissertationes Math. 162 (1979). 
  10. [G1] J. García-Cuerva, Extrapolation of weighted norm inequalities from endpoint spaces to Banach lattices, J. London Math. Soc. (2) 46 (1992), 280-294. Zbl0770.42012
  11. [G-R] J. García-Cuerva and J.-L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 114, 1985. 
  12. [H-M-W] R. A. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-252. Zbl0262.44004
  13. [J-N] R. Johnson and C. J. Neugebauer, Homeomorphisms preserving A p , Rev. Mat. Iberoamericana 3 (1987), 249-273. 
  14. [K] K. S. Kazarian, On bases and unconditional bases in the spaces L p ( d μ ) , 1 ≤ p < ∞ , Studia Math. 71 (1982), 227-249. Zbl0502.46009
  15. [Ma] S. G. Mallat, Multiresolution approximation and wavelet orthonormal bases of L 2 ( ) , Trans. Amer. Math. Soc. 315 (1989), 69-87. 
  16. [Mau] B. Maurey, Isomorphismes entre espaces H 1 , Acta Math. 145 (1980), 79-120. 
  17. [Me] Y. Meyer, Ondelettes et Opérateurs, Vols. I and II, Hermann, Paris, 1990. 
  18. [Mu] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
  19. [S-S] P. Sjölin and J. O. Strömberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983), 111-125. Zbl0519.46058
  20. [St] J. O. Strömberg, A modified Franklin system and higher order spline systems on n as unconditional bases for Hardy spaces, in: Proc. Conf. in Honor of Antoni Zygmund, W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones (eds.), Wadsworth, 1981, 475-493. 
  21. [S-T] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989. 
  22. [S-W] J. O. Strömberg and R. Wheeden, Fractional integrals on weighted H p and L p spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321. 
  23. [W] P. Wojtaszczyk, The Franklin system is an unconditional basis in H 1 , Ark. Mat. 20 (1982), 293-300. Zbl0534.46038
  24. [W1] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, 1991. 

NotesEmbed ?

top

You must be logged in to post comments.