# Closed subgroups in Banach spaces

Fredric Ancel; Tadeusz Dobrowolski; Janusz Grabowski

Studia Mathematica (1994)

- Volume: 109, Issue: 3, page 277-290
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topAncel, Fredric, Dobrowolski, Tadeusz, and Grabowski, Janusz. "Closed subgroups in Banach spaces." Studia Mathematica 109.3 (1994): 277-290. <http://eudml.org/doc/216074>.

@article{Ancel1994,

abstract = {We show that zero-dimensional nondiscrete closed subgroups do exist in Banach spaces E. This happens exactly when E contains an isomorphic copy of $c_0$. Other results on subgroups of linear spaces are obtained.},

author = {Ancel, Fredric, Dobrowolski, Tadeusz, Grabowski, Janusz},

journal = {Studia Mathematica},

keywords = {additive subgroup of linear space; basic sequence; weakly closed; topological dimension; zero-dimensional nondiscrete closed subgroups do exist in Banach spaces; subgroups of linear spaces},

language = {eng},

number = {3},

pages = {277-290},

title = {Closed subgroups in Banach spaces},

url = {http://eudml.org/doc/216074},

volume = {109},

year = {1994},

}

TY - JOUR

AU - Ancel, Fredric

AU - Dobrowolski, Tadeusz

AU - Grabowski, Janusz

TI - Closed subgroups in Banach spaces

JO - Studia Mathematica

PY - 1994

VL - 109

IS - 3

SP - 277

EP - 290

AB - We show that zero-dimensional nondiscrete closed subgroups do exist in Banach spaces E. This happens exactly when E contains an isomorphic copy of $c_0$. Other results on subgroups of linear spaces are obtained.

LA - eng

KW - additive subgroup of linear space; basic sequence; weakly closed; topological dimension; zero-dimensional nondiscrete closed subgroups do exist in Banach spaces; subgroups of linear spaces

UR - http://eudml.org/doc/216074

ER -

## References

top- [AO] J. M. Aarts and L. G. Oversteegen, The product structure of homogeneous spaces, Indag. Math. 1 (1990), 1-5. Zbl0696.54008
- [BP1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. Zbl0084.09805
- [BP2] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. Zbl0304.57001
- [BPR] C. Bessaga, A. Pełczyński and S. Rolewicz, Some properties of the space (s), Colloq. Math. 7 (1957), 45-51.
- [BHM] R. Brown, P. J. Higgins and S. A. Morris Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties, Math. Proc. Cambridge Philos. Soc. 78 (1975), 19-32.
- [Da] M. M. Day, Normed Linear Spaces, 3rd ed., Springer, Berlin, 1973.
- [Di] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
- [DG] T. Dobrowolski and J. Grabowski, Subgroups of Hilbert spaces, Math. Z. 211 (1992), 657-669.
- [DT] T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235. Zbl0472.57009
- [E] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978.
- [K] N. J. Kalton, Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974), 151-177. Zbl0296.46010
- [P] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. Zbl0104.08503
- [T] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262. Zbl0468.57015

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.