Diophantine approximation in Banach spaces
Lior Fishman[1]; David Simmons[2]; Mariusz Urbański[1]
- [1] University of North Texas Department of Mathematics 1155 Union Circle #311430 Denton, TX 76203-5017, USA
- [2] Ohio State University Department of Mathematics 231 W. 18th Avenue Columbus Ohio, OH 43210-1174, USA
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 363-384
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topFishman, Lior, Simmons, David, and Urbański, Mariusz. "Diophantine approximation in Banach spaces." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 363-384. <http://eudml.org/doc/275786>.
@article{Fishman2014,
abstract = {In this paper, we extend the theory of simultaneous Diophantine approximation to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general framework and define what it means for such a theorem to be optimal. We show that optimality is implied by but does not imply the existence of badly approximable points.},
affiliation = {University of North Texas Department of Mathematics 1155 Union Circle #311430 Denton, TX 76203-5017, USA; Ohio State University Department of Mathematics 231 W. 18th Avenue Columbus Ohio, OH 43210-1174, USA; University of North Texas Department of Mathematics 1155 Union Circle #311430 Denton, TX 76203-5017, USA},
author = {Fishman, Lior, Simmons, David, Urbański, Mariusz},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {10},
number = {2},
pages = {363-384},
publisher = {Société Arithmétique de Bordeaux},
title = {Diophantine approximation in Banach spaces},
url = {http://eudml.org/doc/275786},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Fishman, Lior
AU - Simmons, David
AU - Urbański, Mariusz
TI - Diophantine approximation in Banach spaces
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 363
EP - 384
AB - In this paper, we extend the theory of simultaneous Diophantine approximation to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general framework and define what it means for such a theorem to be optimal. We show that optimality is implied by but does not imply the existence of badly approximable points.
LA - eng
UR - http://eudml.org/doc/275786
ER -
References
top- F. D. Ancel, T. Dobrowolski, and J. Grabowski, Closed subgroups in Banach spaces, Studia Math. 109 (1994), no. 3, 277–290. Zbl0840.46012MR1274013
- J. Chaika, Y. Cheung, and H. A. Masur, Winning games for bounded geodesics in moduli spaces of quadratic differentials,http://arxiv.org/abs/1109.5976 preprint 2011. Zbl1284.30034
- M. M. Dodson and B. Everitt, Metrical Diophantine approximation for quaternions, http://arxiv.org/abs/1109.3229, 2012, preprint. Zbl06399691MR3286521
- L. Fishman, D. Y. Kleinbock, K. Merrill, and D. S. Simmons, Intrinsic Diophantine approximation on manifolds, http://arxiv.org/abs/1405.7650 preprint 2014.
- L. Fishman and D. S. Simmons, Intrinsic approximation for fractals defined by rational iterated function systems - Mahler’s research suggestion, http://arxiv.org/abs/1208.2089 preprint 2012, to appear in Proc. Lond. Math. Soc. (3). Zbl1309.11059MR3237740
- L. Fishman and D. S. Simmons, Unconventional height functions in simultaneous Diophantine approximation, http://arxiv.org/abs/1401.8266 preprint 2014. MR3237740
- L. Fishman, D. S. Simmons, and M. Urbański, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, http://arxiv.org/abs/1301.5630, 2013, preprint.
- G. H. Hardy, Orders of infinity. The Infinitärcalcül of Paul du Bois-Reymond, Cambridge Tracts in Mathematics and Mathematical Physics, No. 12, Hafner Publishing Co., New York, 1971.
- B. R. Hunt, T. D. Sauer, and J. A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217–238. Zbl0763.28009MR1161274
- S. Kristensen, On well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 2, 255–268. Zbl1088.11056MR2006063
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.