Illumination bodies and affine surface area

Elisabeth Werner

Studia Mathematica (1994)

  • Volume: 110, Issue: 3, page 257-269
  • ISSN: 0039-3223

Abstract

top
We show that the affine surface area as(∂K) of a convex body K in n can be computed as a s ( K ) = l i m δ 0 d n ( v o l n ( K δ ) - v o l n ( K ) ) / ( δ 2 / ( n + 1 ) ) where d n is a constant and K δ is the illumination body.

How to cite

top

Werner, Elisabeth. "Illumination bodies and affine surface area." Studia Mathematica 110.3 (1994): 257-269. <http://eudml.org/doc/216113>.

@article{Werner1994,
abstract = {We show that the affine surface area as(∂K) of a convex body K in $ℝ^\{n\}$ can be computed as $as(∂K) = lim_\{δ→0\} d_\{n\} (vol_\{n\}(K^\{δ\}) - vol_\{n\}(K))/(δ^\{2/(n+1)\})$ where $d_\{n\}$ is a constant and $K^\{δ\}$ is the illumination body.},
author = {Werner, Elisabeth},
journal = {Studia Mathematica},
keywords = {illumination body; affine surface area; convex floating body},
language = {eng},
number = {3},
pages = {257-269},
title = {Illumination bodies and affine surface area},
url = {http://eudml.org/doc/216113},
volume = {110},
year = {1994},
}

TY - JOUR
AU - Werner, Elisabeth
TI - Illumination bodies and affine surface area
JO - Studia Mathematica
PY - 1994
VL - 110
IS - 3
SP - 257
EP - 269
AB - We show that the affine surface area as(∂K) of a convex body K in $ℝ^{n}$ can be computed as $as(∂K) = lim_{δ→0} d_{n} (vol_{n}(K^{δ}) - vol_{n}(K))/(δ^{2/(n+1)})$ where $d_{n}$ is a constant and $K^{δ}$ is the illumination body.
LA - eng
KW - illumination body; affine surface area; convex floating body
UR - http://eudml.org/doc/216113
ER -

References

top
  1. [B] W. Blaschke, Vorlesungen über Differentialgeometrie II, Springer, 1923. Zbl49.0499.01
  2. [H] R. Howard, personal communication. 
  3. [L1] K. Leichtweiss, Über ein Formel Blaschkes zur Affinoberfläche, Studia Sci. Math. Hungar. 21 (1986), 453-474. Zbl0561.53012
  4. [L2] K. Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), 429-464. 
  5. [Lu] E. Lutwak, Extended affine surface area, Adv. in Math. 85 (1991), 39-68. Zbl0727.53016
  6. [SW] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66 (1990), 275-290. Zbl0739.52008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.