A general geometric construction for affine surface area

Elisabeth Werner

Studia Mathematica (1999)

  • Volume: 132, Issue: 3, page 227-238
  • ISSN: 0039-3223

Abstract

top
Let K be a convex body in n and B be the Euclidean unit ball in n . We show that l i m t 0 ( | K | - | K t | ) / ( | B | - | B t | ) = a s ( K ) / a s ( B ) , where as(K) respectively as(B) is the affine surface area of K respectively B and K t t 0 , B t t 0 are general families of convex bodies constructed from K,B satisfying certain conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].

How to cite

top

Werner, Elisabeth. "A general geometric construction for affine surface area." Studia Mathematica 132.3 (1999): 227-238. <http://eudml.org/doc/216596>.

@article{Werner1999,
abstract = {Let K be a convex body in $ℝ^n$ and B be the Euclidean unit ball in $ℝ^n$. We show that $lim_\{t→ 0\} (|K| -|K_t|)/(|B| - |B_t|) = as(K)/as(B)$, where as(K) respectively as(B) is the affine surface area of K respectively B and $\{K_t\}_\{t≥0\}$, $\{B_t\}_\{t≥0\}$ are general families of convex bodies constructed from K,B satisfying certain conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].},
author = {Werner, Elisabeth},
journal = {Studia Mathematica},
keywords = {affine surface area; convex floating body; convolution body; illumination body; Santaló region},
language = {eng},
number = {3},
pages = {227-238},
title = {A general geometric construction for affine surface area},
url = {http://eudml.org/doc/216596},
volume = {132},
year = {1999},
}

TY - JOUR
AU - Werner, Elisabeth
TI - A general geometric construction for affine surface area
JO - Studia Mathematica
PY - 1999
VL - 132
IS - 3
SP - 227
EP - 238
AB - Let K be a convex body in $ℝ^n$ and B be the Euclidean unit ball in $ℝ^n$. We show that $lim_{t→ 0} (|K| -|K_t|)/(|B| - |B_t|) = as(K)/as(B)$, where as(K) respectively as(B) is the affine surface area of K respectively B and ${K_t}_{t≥0}$, ${B_t}_{t≥0}$ are general families of convex bodies constructed from K,B satisfying certain conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].
LA - eng
KW - affine surface area; convex floating body; convolution body; illumination body; Santaló region
UR - http://eudml.org/doc/216596
ER -

References

top
  1. [B] W. Blaschke, Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie, Springer, 1923. Zbl49.0499.01
  2. [Gr] P. Gruber, Aspects of approximation of convex bodies, in: Handbook of Convex Geometry, Vol. A, North-Holland, 1993, 321-345. 
  3. [K] K. Kiener, Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev, Arch. Math. (Basel) 46 (1986), 162-168. Zbl0563.52009
  4. [L1] K. Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), 429-464. 
  5. [L2] K. Leichtweiss, Über ein Formel Blaschkes zur Affinoberfläche, Studia Sci. Math. Hungar. 21 (1986), 453-474. Zbl0561.53012
  6. [Lu] E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991), 39-68. Zbl0727.53016
  7. [Lu-O] E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geometry 41 (1995), 227-246. Zbl0867.52003
  8. [M-W] M. Meyer and E. Werner, The Santaló regions of a convex body, Trans. Amer. Math. Soc., to appear. Zbl0917.52004
  9. [Schm] M. Schmuckenschläger, The distribution function of the convolution square of a convex symmetric body in n , Israel J. Math. 78 (1992), 309-334. Zbl0774.52004
  10. [S] C. Schütt, Floating body, illumination body, and polytopal approximation, preprint. Zbl0884.52007
  11. [S-W] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66 (1990), 275-290. Zbl0739.52008
  12. [W] E. Werner, Illumination bodies and affine surface area, Studia Math. 110 (1994), 257-269. Zbl0813.52007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.