# One-parameter subgroups and the B-C-H formula

Studia Mathematica (1994)

- Volume: 111, Issue: 2, page 163-185
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topWojtyński, Wojciech. "One-parameter subgroups and the B-C-H formula." Studia Mathematica 111.2 (1994): 163-185. <http://eudml.org/doc/216126>.

@article{Wojtyński1994,

abstract = {An algebraic scheme for Lie theory of topological groups with "large" families of one-parameter subgroups is proposed. Such groups are quotients of "𝔼ℝ-groups", i.e. topological groups equipped additionally with the continuous exterior binary operation of multiplication by real numbers, and generated by special ("exponential") elements. It is proved that under natural conditions on the topology of an 𝔼ℝ-group its group multiplication is described by the B-C-H formula in terms of the associated Lie algebra.},

author = {Wojtyński, Wojciech},

journal = {Studia Mathematica},

keywords = {Lie theory; topological groups; one-parameter subgroups; Baker-Campbell-Hausdorff formula; Lie algebra},

language = {eng},

number = {2},

pages = {163-185},

title = {One-parameter subgroups and the B-C-H formula},

url = {http://eudml.org/doc/216126},

volume = {111},

year = {1994},

}

TY - JOUR

AU - Wojtyński, Wojciech

TI - One-parameter subgroups and the B-C-H formula

JO - Studia Mathematica

PY - 1994

VL - 111

IS - 2

SP - 163

EP - 185

AB - An algebraic scheme for Lie theory of topological groups with "large" families of one-parameter subgroups is proposed. Such groups are quotients of "𝔼ℝ-groups", i.e. topological groups equipped additionally with the continuous exterior binary operation of multiplication by real numbers, and generated by special ("exponential") elements. It is proved that under natural conditions on the topology of an 𝔼ℝ-group its group multiplication is described by the B-C-H formula in terms of the associated Lie algebra.

LA - eng

KW - Lie theory; topological groups; one-parameter subgroups; Baker-Campbell-Hausdorff formula; Lie algebra

UR - http://eudml.org/doc/216126

ER -

## References

top- [1] G. Birkhoff, Analytical groups, Trans. Amer. Math. Soc. 43 (1938), 61-101. Zbl0018.20502
- [2] N. Bourbaki, Groupes et algèbres de Lie, Chap. II, Hermann, Paris, 1971.
- [3] D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (1970), 165-173. Zbl0205.28201
- [4] J. Grabowski and W. Wojtyński, Quotient groups of linear topological spaces, Colloq. Math. 59 (1991), 35-51. Zbl0727.22005
- [5] M. Herman, Simplicité du groupe des difféomorphismes de classe ${C}^{\infty}$, isotopes à l’identité, du tore de dimension n, C. R. Acad. Sci. Paris Sér. A 273 (1971), 232-234. Zbl0217.49602
- [6] J. Leslie, On a differentiable structure for the group of diffeomorphisms, Topology 6 (1967), 263-271. Zbl0147.23601
- [7] Yu. V. Linnik, An elementary solution of the problem of Waring by the Schnirelmann method, Mat. Sb. (N.S.) 12 (1943), 225-230 (in Russian).
- [8] B. Maissen, Lie-Gruppen mit Banachräumen als Parameterräumen, Acta Math. 108 (1962), 229-269.
- [9] J. Milnor, Remarks on infinite-dimensional Lie groups, in: Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, 1007-1057.
- [10] H. Omori, On the group of diffeomorphisms of a compact manifold, in: Global Analysis, Proc. Sympos. Pure Math. 15, Amer. Math. Soc., 1970, 167-183.
- [11] J. Palis, Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 503-505. Zbl0296.57008
- [12] J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York, 1965.
- [13] S.-S. Chen and R. Yoh, The category of generalized Lie groups, Trans. Amer. Math. Soc. 199 (1974), 281-294. Zbl0291.22003
- [14] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304-307. Zbl0295.57014