Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula

Alois Klíč; Pavel Pokorný; Jan Řeháček

Mathematica Slovaca (2002)

  • Volume: 52, Issue: 1, page 79-97
  • ISSN: 0232-0525

How to cite

top

Klíč, Alois, Pokorný, Pavel, and Řeháček, Jan. "Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula." Mathematica Slovaca 52.1 (2002): 79-97. <http://eudml.org/doc/31945>.

@article{Klíč2002,
author = {Klíč, Alois, Pokorný, Pavel, Řeháček, Jan},
journal = {Mathematica Slovaca},
keywords = {dynamical system; period map; Lie group; Lie bracket; exponential map},
language = {eng},
number = {1},
pages = {79-97},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula},
url = {http://eudml.org/doc/31945},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Klíč, Alois
AU - Pokorný, Pavel
AU - Řeháček, Jan
TI - Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula
JO - Mathematica Slovaca
PY - 2002
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 52
IS - 1
SP - 79
EP - 97
LA - eng
KW - dynamical system; period map; Lie group; Lie bracket; exponential map
UR - http://eudml.org/doc/31945
ER -

References

top
  1. BANYAGA A., The Structure of Classical Diffeomorphism Groups, Math. Appl. 400, Kluwer Academic Publishers, London, 1997. (1997) Zbl0874.58005MR1445290
  2. BOOTHBY W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975. (1975) Zbl0333.53001MR0426007
  3. BOURBAKI N., Élements de mathématique. Fasc. 26: Groupes et algebres de Lie. Chap. I: Algebres de Lie, Actualités Sci. Indust. 1285 (2nd ed.), Hermann, Paris, 1971. (French) (1971) MR0453824
  4. HAMILTON R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222. (1982) Zbl0499.58003MR0656198
  5. KLÍČ A., POKORNÝ P., On dynamical systems generated by two alternating vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), 2015-2030 (1996) MR1430981
  6. KLÍČ A., ŘEHÁČEK J., On systems governed by two alternating vector fields, Appl. Math. 39 (1994), 57-64. (1994) Zbl0797.34047MR1254747
  7. MILNOR J., Remarks on infinite dimensional Lie groups, In: Relativity, Groups and Topology II, Les Houches (1983), North Holland, Amstei dam-New Youik, 1984, pp. 1007-1057. (1983) MR0830252
  8. OLVER P. J., Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986. (1986) Zbl0588.22001MR0836734
  9. PALIS J., Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 503-505. (1974) Zbl0296.57008MR0348795
  10. VARADARJAN V. S., Lie Groups, Lie Alqebras and Their Representations, Prentice-Hall Inc., New Yersey, 1974. (1974) 
  11. WOJTYNSKI W., One-parameter subgroups and the B-C-H formula, Studia Math. 111 (1994), 163-185. (1994) Zbl0838.22007MR1301764

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.