Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula
Alois Klíč; Pavel Pokorný; Jan Řeháček
Mathematica Slovaca (2002)
- Volume: 52, Issue: 1, page 79-97
- ISSN: 0232-0525
Access Full Article
topHow to cite
topKlíč, Alois, Pokorný, Pavel, and Řeháček, Jan. "Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula." Mathematica Slovaca 52.1 (2002): 79-97. <http://eudml.org/doc/31945>.
@article{Klíč2002,
author = {Klíč, Alois, Pokorný, Pavel, Řeháček, Jan},
journal = {Mathematica Slovaca},
keywords = {dynamical system; period map; Lie group; Lie bracket; exponential map},
language = {eng},
number = {1},
pages = {79-97},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula},
url = {http://eudml.org/doc/31945},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Klíč, Alois
AU - Pokorný, Pavel
AU - Řeháček, Jan
TI - Zig-zag dynamical systems and the Baker-Campbell-Hausdorff formula
JO - Mathematica Slovaca
PY - 2002
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 52
IS - 1
SP - 79
EP - 97
LA - eng
KW - dynamical system; period map; Lie group; Lie bracket; exponential map
UR - http://eudml.org/doc/31945
ER -
References
top- BANYAGA A., The Structure of Classical Diffeomorphism Groups, Math. Appl. 400, Kluwer Academic Publishers, London, 1997. (1997) Zbl0874.58005MR1445290
- BOOTHBY W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975. (1975) Zbl0333.53001MR0426007
- BOURBAKI N., Élements de mathématique. Fasc. 26: Groupes et algebres de Lie. Chap. I: Algebres de Lie, Actualités Sci. Indust. 1285 (2nd ed.), Hermann, Paris, 1971. (French) (1971) MR0453824
- HAMILTON R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222. (1982) Zbl0499.58003MR0656198
- KLÍČ A., POKORNÝ P., On dynamical systems generated by two alternating vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), 2015-2030 (1996) MR1430981
- KLÍČ A., ŘEHÁČEK J., On systems governed by two alternating vector fields, Appl. Math. 39 (1994), 57-64. (1994) Zbl0797.34047MR1254747
- MILNOR J., Remarks on infinite dimensional Lie groups, In: Relativity, Groups and Topology II, Les Houches (1983), North Holland, Amstei dam-New Youik, 1984, pp. 1007-1057. (1983) MR0830252
- OLVER P. J., Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986. (1986) Zbl0588.22001MR0836734
- PALIS J., Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 503-505. (1974) Zbl0296.57008MR0348795
- VARADARJAN V. S., Lie Groups, Lie Alqebras and Their Representations, Prentice-Hall Inc., New Yersey, 1974. (1974)
- WOJTYNSKI W., One-parameter subgroups and the B-C-H formula, Studia Math. 111 (1994), 163-185. (1994) Zbl0838.22007MR1301764
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.