# Complex interpolation functors with a family of quasi-power function parameters

Studia Mathematica (1994)

- Volume: 111, Issue: 3, page 283-305
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topFan, Ming. "Complex interpolation functors with a family of quasi-power function parameters." Studia Mathematica 111.3 (1994): 283-305. <http://eudml.org/doc/216133>.

@article{Fan1994,

abstract = {For the complex interpolation functors associated with derivatives of analytic functions, the Calderón fundamental inequality is formulated in both additive and multiplicative forms; discretization, reiteration, the Calderón-Lozanovskiĭ construction for Banach lattices, and the Aronszajn-Gagliardo construction concerning minimality and maximality are presented. These more general complex interpolation functors are closely connected with the real and other interpolation functors via function parameters which are quasi-powers with a logarithmic factor.},

author = {Fan, Ming},

journal = {Studia Mathematica},

keywords = {complex interpolation functors associated with derivatives of analytic functions; Calderón fundamental inequality; discretization; reiteration; Calderón-Lozanovskij construction for Banach lattices; Aronszajn-Gagliardo construction concerning minimality and maximality},

language = {eng},

number = {3},

pages = {283-305},

title = {Complex interpolation functors with a family of quasi-power function parameters},

url = {http://eudml.org/doc/216133},

volume = {111},

year = {1994},

}

TY - JOUR

AU - Fan, Ming

TI - Complex interpolation functors with a family of quasi-power function parameters

JO - Studia Mathematica

PY - 1994

VL - 111

IS - 3

SP - 283

EP - 305

AB - For the complex interpolation functors associated with derivatives of analytic functions, the Calderón fundamental inequality is formulated in both additive and multiplicative forms; discretization, reiteration, the Calderón-Lozanovskiĭ construction for Banach lattices, and the Aronszajn-Gagliardo construction concerning minimality and maximality are presented. These more general complex interpolation functors are closely connected with the real and other interpolation functors via function parameters which are quasi-powers with a logarithmic factor.

LA - eng

KW - complex interpolation functors associated with derivatives of analytic functions; Calderón fundamental inequality; discretization; reiteration; Calderón-Lozanovskij construction for Banach lattices; Aronszajn-Gagliardo construction concerning minimality and maximality

UR - http://eudml.org/doc/216133

ER -

## References

top- [AG] N. Aronszajn and E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Math. Pura Appl. 68 (1965), 51-118. Zbl0195.13102
- [BK] Yu. A. Brudnyĭ and N. Ya. Kruglyak, Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam, 1991.
- [BL] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976. Zbl0344.46071
- [Cal] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. Zbl0204.13703
- [CC] M. J. Carro and J. Cerdà, Complex interpolation and ${L}^{p}$-spaces, ibid. 99 (1991), 57-67.
- [CCS] M. J. Carro, J. Cerdà and J. Sueiro, On Fourier type and uniform convexity of interpolated spaces, Boll. Un. Mat. Ital. 3 (1989), 883-899. Zbl0711.46055
- [Cw] M. Cwikel, Complex interpolation spaces, a disrete definition and reiteration, Indian J. Math. 27 (1978), 1005-1009. Zbl0409.46067
- [FK] M. Fan and S. Kaijser, Complex interpolation with derivatives of analytic functions, J. Funct. Anal. 120 (1994), 380-402. Zbl0806.46077
- [G] J. Gustavsson, Interpolation of weighted ${L}^{p}$-spaces, Studia Math. 72 (1982), 237-251. Zbl0497.46051
- [GP] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, ibid. 60 (1977), 33-59. Zbl0353.46019
- [J] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 14 (1981), 50-72. Zbl0492.46059
- [KP] S. Kaijser and J. W. Pelletier, Interpolation Functors and Duality, Lecture Notes in Math. 1208, Springer, Berlin, 1986.
- [KMP] N. Ya. Kruglyak, L. Maligranda and L. E. Persson, A Carlson type inequality with blocks and interpolation, Studia Math. 104 (1993), 161-180. Zbl0824.46088
- [N] P. Nilsson, Interpolation of Banach lattices, ibid. 82 (1985), 135-154. Zbl0549.46038
- [Pee] J. Peetre, ${H}^{\infty}$ and complex interpolation, Technical report, Univ. of Lund, 1981.
- [Per] L. E. Persson, Interpolation with a parameter function, Math. Scand. 59 (1986), 199-222. Zbl0619.46064
- [S] M. Schechter, Complex interpolation, Compositio Math. 18 (1967), 117-147. Zbl0153.16402

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.