# A Carlson type inequality with blocks and interpolation

Natan Kruglyak; Lech Maligranda; Lars Persson

Studia Mathematica (1993)

- Volume: 104, Issue: 2, page 161-180
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topKruglyak, Natan, Maligranda, Lech, and Persson, Lars. "A Carlson type inequality with blocks and interpolation." Studia Mathematica 104.2 (1993): 161-180. <http://eudml.org/doc/215967>.

@article{Kruglyak1993,

abstract = {An inequality, which generalizes and unifies some recently proved Carlson type inequalities, is proved. The inequality contains a certain number of “blocks” and it is shown that these blocks are, in a sense, optimal and cannot be removed or essentially changed. The proof is based on a special equivalent representation of a concave function (see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre’s interpolation functor $⟨⟩_\{φ\}$ (see [26]) and its Gagliardo closure on couples of functional Banach lattices in terms of the Calderón-Lozanovskiǐ construction. Our interest in this functor is inspired by the fact that if $φ = t^\{θ\}(0 < θ < 1)$, then, on couples of Banach lattices and their retracts, it coincides with the complex method (see [20], [27]) and, thus, it may be regarded as a “real version” of the complex method.},

author = {Kruglyak, Natan, Maligranda, Lech, Persson, Lars},

journal = {Studia Mathematica},

keywords = {concavity; Carlson's inequality; blocks; interpolation; Peetre's interpolation functor; Calderón-Lozanovskiǐ construction; Carlson type inequalities; Gagliardo closure on couples of functional Banach lattices; Calderón-Lozanovskij construction; couples of Banach lattices and their retracts; complex method},

language = {eng},

number = {2},

pages = {161-180},

title = {A Carlson type inequality with blocks and interpolation},

url = {http://eudml.org/doc/215967},

volume = {104},

year = {1993},

}

TY - JOUR

AU - Kruglyak, Natan

AU - Maligranda, Lech

AU - Persson, Lars

TI - A Carlson type inequality with blocks and interpolation

JO - Studia Mathematica

PY - 1993

VL - 104

IS - 2

SP - 161

EP - 180

AB - An inequality, which generalizes and unifies some recently proved Carlson type inequalities, is proved. The inequality contains a certain number of “blocks” and it is shown that these blocks are, in a sense, optimal and cannot be removed or essentially changed. The proof is based on a special equivalent representation of a concave function (see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre’s interpolation functor $⟨⟩_{φ}$ (see [26]) and its Gagliardo closure on couples of functional Banach lattices in terms of the Calderón-Lozanovskiǐ construction. Our interest in this functor is inspired by the fact that if $φ = t^{θ}(0 < θ < 1)$, then, on couples of Banach lattices and their retracts, it coincides with the complex method (see [20], [27]) and, thus, it may be regarded as a “real version” of the complex method.

LA - eng

KW - concavity; Carlson's inequality; blocks; interpolation; Peetre's interpolation functor; Calderón-Lozanovskiǐ construction; Carlson type inequalities; Gagliardo closure on couples of functional Banach lattices; Calderón-Lozanovskij construction; couples of Banach lattices and their retracts; complex method

UR - http://eudml.org/doc/215967

ER -

## References

top- [1] N. Aronszajn and E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. 68 (1965), 51-117. Zbl0195.13102
- [2] E. F. Beckenbach and R. Bellman, Inequalities, Springer, 1983.
- [3] E. I. Berezhnoǐ, Interpolation of linear and compact operators in $\phi ({X}_{0},{X}_{1})$ spaces, in: Qualitative and Approximative Methods for the Investigation of Operator Equations 5, Yaroslavl 1980, 19-29 (in Russian).
- [4] J. Bergh and J. Löfström, Interpolation Spaces, Springer, 1976. Zbl0344.46071
- [5] Yu. A. Brudnyǐ and N. Ya. Kruglyak, Interpolation Functors, book manuscript, Yaroslavl 1981 (in Russian).
- [6] Yu. A. Brudnyǐ and N. Ya. Kruglyak, Interpolation Functors and Interpolation Spaces I, North-Holland, 1991.
- [7] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 133-190. Zbl0204.13703
- [8] F. Carlson, Une inégalité, Ark. Mat. Astr. Fysik 25 B (1934), 1-5. Zbl0009.34202
- [9] E. Gagliardo, Caratterizzazione costruttiva di tutti gli spazi interpolazione tra spazi di Banach, in: Symposia Math. 2 (INDAM, Rome 1968), Academic Press, London 1969, 95-106.
- [10] J. Gustavsson, On interpolation of weighted ${L}^{p}$-spaces and Ovchinnikov’s theorem, Studia Math. 72 (1982), 237-251. Zbl0497.46051
- [11] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, ibid. 60 (1977), 33-59. Zbl0353.46019
- [12] G. H. Hardy, A note on two inequalities, J. London Math. Soc. 11 (1936), 167-170. Zbl0014.29804
- [13] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981), 50-73. Zbl0492.46059
- [14] B. Kjellberg, On some inequalities, in: C. R. Dixième Congrès des Mathématiciens Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen 1946, 333-340.
- [15] N. Ya. Kruglyak, A new proof of the Riesz-Thorin theorem and interpolation property of the Calderón-Lozanovskiǐ construction, research report, Yaroslavl 1983 (VINITI No. 6909-83 Dep.) (in Russian).
- [16] N. Ya. Kruglyak and M. Mastyło, Correct interpolation functors of orbits, J. Funct. Anal., to appear. Zbl0826.46066
- [17] G. Ya. Lozanovskiǐ, A remark on an interpolation theorem of Calderón, Funktsional. Anal. i Prilozhen. 6 (4) (1972), 89-90; English transl.: Functional Anal. Appl. 6 (1972), 333-334.
- [18] G. Ya. Lozanovskiǐ, On some Banach lattices. IV, Sibirsk. Mat. Zh. 14 (1973), 140-155 (in Russian).
- [19] G. Ya. Lozanovskiǐ, On a complex method of interpolation in Banach lattices of measurable functions, Dokl. Akad. Nauk SSSR 226 (1976), 55-57; English transl.: Soviet Math. Dokl. 17 (1) (1976), 51-54.
- [20] G. Ya. Lozanovskiǐ, The complex method of interpolation in Banach lattices of measurable functions, in: Probl. Mat. Anal. 7, Leningrad 1979, 83-99 (in Russian) Zbl0416.46021
- [21] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Campinas 1989. Zbl0874.46022
- [22] P. Nilsson, Interpolation of Banach lattices, Studia Math. 82 (1985), 133-154. Zbl0549.46038
- [23] V. I. Ovchinnikov, Interpolation theorems following from Grothendieck's inequality, Funktsional. Anal. i Prilozhen. 10 (4) (1976), 45-54; English transl.: Functional Anal. Appl. 10 (1976), 287-294 (1977).
- [24] V. I. Ovchinnikov, Interpolation of quasi-normed Orlicz spaces, Funktsional. Anal. i Prilozhen. 16 (3) (1982), 78-79; English transl.: Functional Anal. Appl. 16 (1982), 223-224 (1983).
- [25] V. I. Ovchinnikov, The Method of Orbits in Interpolation Theory, Math. Rep. 1, Part 2, Harwood, 1984. Zbl0875.46007
- [26] J. Peetre, Sur l'utilisation des suites inconditionnellement sommables dans la théorie des espaces d'interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190. Zbl0233.46047
- [27] V. A. Shestakov, Complex interpolation in Banach spaces of measurable functions, Vestnik Leningrad. Univ. 1974 (19), 64-68 (in Russian). Zbl0297.46028
- [28] V. A. Shestakov, Transformations of Banach ideal spaces and the interpolation of linear operators, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 569-577 (in Russian). Zbl0493.46063
- [29] P. P. Zabreǐko, An interpolation theorem for linear operators, Mat. Zametki 2 (1967), 593-598; English transl. in Math. Notes 2 (1967).

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.