Precompactness in the uniform ergodic theory
Studia Mathematica (1994)
- Volume: 112, Issue: 1, page 89-97
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLyubich, Yu., and Zemánek, J.. "Precompactness in the uniform ergodic theory." Studia Mathematica 112.1 (1994): 89-97. <http://eudml.org/doc/216140>.
@article{Lyubich1994,
abstract = {We characterize the Banach space operators T whose arithmetic means $\{n^\{-1\}(I + T + ... + T^\{n-1\})\}_\{n ≥ 1\}$ form a precompact set in the operator norm topology. This occurs if and only if the sequence $\{n^\{-1\} T^n\}_\{n ≥ 1\}$ is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.},
author = {Lyubich, Yu., Zemánek, J.},
journal = {Studia Mathematica},
keywords = {Banach space operators; arithmetic means; precompact set in the operator norm topology},
language = {eng},
number = {1},
pages = {89-97},
title = {Precompactness in the uniform ergodic theory},
url = {http://eudml.org/doc/216140},
volume = {112},
year = {1994},
}
TY - JOUR
AU - Lyubich, Yu.
AU - Zemánek, J.
TI - Precompactness in the uniform ergodic theory
JO - Studia Mathematica
PY - 1994
VL - 112
IS - 1
SP - 89
EP - 97
AB - We characterize the Banach space operators T whose arithmetic means ${n^{-1}(I + T + ... + T^{n-1})}_{n ≥ 1}$ form a precompact set in the operator norm topology. This occurs if and only if the sequence ${n^{-1} T^n}_{n ≥ 1}$ is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.
LA - eng
KW - Banach space operators; arithmetic means; precompact set in the operator norm topology
UR - http://eudml.org/doc/216140
ER -
References
top- [1] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974. Zbl0299.46062
- [2] N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
- [3] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, New York, 1958. Zbl0084.10402
- [4] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. Zbl67.0407.02
- [5] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.
- [6] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. 18 (1968), 428-438. Zbl0162.18601
- [7] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland, Amsterdam, 1974. Zbl0288.46043
- [8] J. J. Koliha, Power convergence and pseudoinverses of operators in Banach spaces, J. Math. Anal. Appl. 48 (1974), 446-469. Zbl0292.47003
- [9] J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974), 467-473. Zbl0265.46049
- [10] H. Li, Equivalent conditions for the convergence of a sequence , Acta Math. Sinica 29 (1986), 285-288 (in Chinese).
- [11] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340. Zbl0252.47004
- [12] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
- [13] H. C. Rönnefarth, Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, Berlin, 1993.
- [14] A. Świech, Spectral characterization of operators with precompact orbit, Studia Math. 96 (1990), 277-282; 97 (1991), 266. Zbl0725.47003
- [15] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980. Zbl0501.46003
- [16] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Warszawa, 1994, 369-385. Zbl0822.47005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.