Precompactness in the uniform ergodic theory

Yu. Lyubich; J. Zemánek

Studia Mathematica (1994)

  • Volume: 112, Issue: 1, page 89-97
  • ISSN: 0039-3223

Abstract

top
We characterize the Banach space operators T whose arithmetic means n - 1 ( I + T + . . . + T n - 1 ) n 1 form a precompact set in the operator norm topology. This occurs if and only if the sequence n - 1 T n n 1 is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.

How to cite

top

Lyubich, Yu., and Zemánek, J.. "Precompactness in the uniform ergodic theory." Studia Mathematica 112.1 (1994): 89-97. <http://eudml.org/doc/216140>.

@article{Lyubich1994,
abstract = {We characterize the Banach space operators T whose arithmetic means $\{n^\{-1\}(I + T + ... + T^\{n-1\})\}_\{n ≥ 1\}$ form a precompact set in the operator norm topology. This occurs if and only if the sequence $\{n^\{-1\} T^n\}_\{n ≥ 1\}$ is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.},
author = {Lyubich, Yu., Zemánek, J.},
journal = {Studia Mathematica},
keywords = {Banach space operators; arithmetic means; precompact set in the operator norm topology},
language = {eng},
number = {1},
pages = {89-97},
title = {Precompactness in the uniform ergodic theory},
url = {http://eudml.org/doc/216140},
volume = {112},
year = {1994},
}

TY - JOUR
AU - Lyubich, Yu.
AU - Zemánek, J.
TI - Precompactness in the uniform ergodic theory
JO - Studia Mathematica
PY - 1994
VL - 112
IS - 1
SP - 89
EP - 97
AB - We characterize the Banach space operators T whose arithmetic means ${n^{-1}(I + T + ... + T^{n-1})}_{n ≥ 1}$ form a precompact set in the operator norm topology. This occurs if and only if the sequence ${n^{-1} T^n}_{n ≥ 1}$ is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.
LA - eng
KW - Banach space operators; arithmetic means; precompact set in the operator norm topology
UR - http://eudml.org/doc/216140
ER -

References

top
  1. [1] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974. Zbl0299.46062
  2. [2] N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
  3. [3] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, New York, 1958. Zbl0084.10402
  4. [4] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. Zbl67.0407.02
  5. [5] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967. 
  6. [6] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. 18 (1968), 428-438. Zbl0162.18601
  7. [7] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland, Amsterdam, 1974. Zbl0288.46043
  8. [8] J. J. Koliha, Power convergence and pseudoinverses of operators in Banach spaces, J. Math. Anal. Appl. 48 (1974), 446-469. Zbl0292.47003
  9. [9] J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974), 467-473. Zbl0265.46049
  10. [10] H. Li, Equivalent conditions for the convergence of a sequence B n n = 1 , Acta Math. Sinica 29 (1986), 285-288 (in Chinese). 
  11. [11] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340. Zbl0252.47004
  12. [12] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158. 
  13. [13] H. C. Rönnefarth, Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, Berlin, 1993. 
  14. [14] A. Świech, Spectral characterization of operators with precompact orbit, Studia Math. 96 (1990), 277-282; 97 (1991), 266. Zbl0725.47003
  15. [15] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980. Zbl0501.46003
  16. [16] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Warszawa, 1994, 369-385. Zbl0822.47005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.