Construction of standard exact sequences of power series spaces

Markus Poppenberg; Dietmar Vogt

Studia Mathematica (1995)

  • Volume: 112, Issue: 3, page 229-241
  • ISSN: 0039-3223

Abstract

top
The following result is proved: Let Λ R p ( α ) denote a power series space of infinite or of finite type, and equip Λ R p ( α ) with its canonical fundamental system of norms, R ∈ 0,∞, 1 ≤ p < ∞. Then a tamely exact sequence (⁎) 0 Λ R p ( α ) Λ R p ( α ) Λ R p ( α ) 0 exists iff α is strongly stable, i.e. l i m n α 2 n / α n = 1 , and a linear-tamely exact sequence (*) exists iff α is uniformly stable, i.e. there is A such that l i m s u p n α K n / α n A < for all K. This result extends a theorem of Vogt and Wagner which states that a topologically exact sequence (*) exists iff α is stable, i.e. s u p n α 2 n / α n < .

How to cite

top

Poppenberg, Markus, and Vogt, Dietmar. "Construction of standard exact sequences of power series spaces." Studia Mathematica 112.3 (1995): 229-241. <http://eudml.org/doc/216150>.

@article{Poppenberg1995,
author = {Poppenberg, Markus, Vogt, Dietmar},
journal = {Studia Mathematica},
keywords = {power series space of infinite or of finite type; tamely exact sequence; strongly stable; topologically exact sequence},
language = {eng},
number = {3},
pages = {229-241},
title = {Construction of standard exact sequences of power series spaces},
url = {http://eudml.org/doc/216150},
volume = {112},
year = {1995},
}

TY - JOUR
AU - Poppenberg, Markus
AU - Vogt, Dietmar
TI - Construction of standard exact sequences of power series spaces
JO - Studia Mathematica
PY - 1995
VL - 112
IS - 3
SP - 229
EP - 241
LA - eng
KW - power series space of infinite or of finite type; tamely exact sequence; strongly stable; topologically exact sequence
UR - http://eudml.org/doc/216150
ER -

References

top
  1. [1] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. Zbl0499.58003
  2. [2] H. Külkens, Gleichmäßig shiftstabile Potenzreihenräume, Diplomarbeit, Wuppertal, 1991. 
  3. [3] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer, 1972. 
  4. [4] M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z., to appear. 
  5. [5] M. Poppenberg and D. Vogt, Tame splitting theory for Fréchet-Hilbert spaces, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. M. Ruess and D. Vogt (eds.), Lecture Notes in Pure and Appl. Math. 150, Marcel Dekker, New York, 1994, 475-492. Zbl0815.46003
  6. [6] D. Vogt, On the characterization of subspaces and quotient spaces of stable power series spaces of finite type, Arch. Math. (Basel) 50 (1988), 463-469. Zbl0655.46008
  7. [7] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301. Zbl0512.46003
  8. [8] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270. Zbl0539.46009
  9. [9] D. Vogt, Tame spaces and power series spaces, Math. Z. 196 (1987), 523-536. Zbl0622.46004
  10. [10] D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208. Zbl0724.46007
  11. [11] D. Vogt and M. J. Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ, Studia Math. 70 (1981), 63-80. Zbl0402.46008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.