Construction of standard exact sequences of power series spaces

Markus Poppenberg; Dietmar Vogt

Studia Mathematica (1995)

  • Volume: 112, Issue: 3, page 229-241
  • ISSN: 0039-3223

Abstract

top
The following result is proved: Let denote a power series space of infinite or of finite type, and equip with its canonical fundamental system of norms, R ∈ 0,∞, 1 ≤ p < ∞. Then a tamely exact sequence (⁎) exists iff α is strongly stable, i.e. , and a linear-tamely exact sequence (*) exists iff α is uniformly stable, i.e. there is A such that for all K. This result extends a theorem of Vogt and Wagner which states that a topologically exact sequence (*) exists iff α is stable, i.e. .

How to cite

top

Poppenberg, Markus, and Vogt, Dietmar. "Construction of standard exact sequences of power series spaces." Studia Mathematica 112.3 (1995): 229-241. <http://eudml.org/doc/216150>.

@article{Poppenberg1995,
author = {Poppenberg, Markus, Vogt, Dietmar},
journal = {Studia Mathematica},
keywords = {power series space of infinite or of finite type; tamely exact sequence; strongly stable; topologically exact sequence},
language = {eng},
number = {3},
pages = {229-241},
title = {Construction of standard exact sequences of power series spaces},
url = {http://eudml.org/doc/216150},
volume = {112},
year = {1995},
}

TY - JOUR
AU - Poppenberg, Markus
AU - Vogt, Dietmar
TI - Construction of standard exact sequences of power series spaces
JO - Studia Mathematica
PY - 1995
VL - 112
IS - 3
SP - 229
EP - 241
LA - eng
KW - power series space of infinite or of finite type; tamely exact sequence; strongly stable; topologically exact sequence
UR - http://eudml.org/doc/216150
ER -

References

top
  1. [1] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. Zbl0499.58003
  2. [2] H. Külkens, Gleichmäßig shiftstabile Potenzreihenräume, Diplomarbeit, Wuppertal, 1991. 
  3. [3] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer, 1972. 
  4. [4] M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z., to appear. 
  5. [5] M. Poppenberg and D. Vogt, Tame splitting theory for Fréchet-Hilbert spaces, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. M. Ruess and D. Vogt (eds.), Lecture Notes in Pure and Appl. Math. 150, Marcel Dekker, New York, 1994, 475-492. Zbl0815.46003
  6. [6] D. Vogt, On the characterization of subspaces and quotient spaces of stable power series spaces of finite type, Arch. Math. (Basel) 50 (1988), 463-469. Zbl0655.46008
  7. [7] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301. Zbl0512.46003
  8. [8] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270. Zbl0539.46009
  9. [9] D. Vogt, Tame spaces and power series spaces, Math. Z. 196 (1987), 523-536. Zbl0622.46004
  10. [10] D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208. Zbl0724.46007
  11. [11] D. Vogt and M. J. Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ, Studia Math. 70 (1981), 63-80. Zbl0402.46008

NotesEmbed ?

top

You must be logged in to post comments.