Topological conditions for bound-2 isomorphisms of C(X)

H. Cohen; C.-H. Chu

Studia Mathematica (1995)

  • Volume: 113, Issue: 1, page 1-24
  • ISSN: 0039-3223

Abstract

top
We establish the topological relationship between compact Hausdorff spaces X and Y equivalent to the existence of a bound-2 isomorphism of the sup norm Banach spaces C(X) and C(Y).

How to cite

top

Cohen, H., and Chu, C.-H.. "Topological conditions for bound-2 isomorphisms of C(X)." Studia Mathematica 113.1 (1995): 1-24. <http://eudml.org/doc/216156>.

@article{Cohen1995,
abstract = {We establish the topological relationship between compact Hausdorff spaces X and Y equivalent to the existence of a bound-2 isomorphism of the sup norm Banach spaces C(X) and C(Y).},
author = {Cohen, H., Chu, C.-H.},
journal = {Studia Mathematica},
keywords = {bound-2 isomorphism},
language = {eng},
number = {1},
pages = {1-24},
title = {Topological conditions for bound-2 isomorphisms of C(X)},
url = {http://eudml.org/doc/216156},
volume = {113},
year = {1995},
}

TY - JOUR
AU - Cohen, H.
AU - Chu, C.-H.
TI - Topological conditions for bound-2 isomorphisms of C(X)
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 1
SP - 1
EP - 24
AB - We establish the topological relationship between compact Hausdorff spaces X and Y equivalent to the existence of a bound-2 isomorphism of the sup norm Banach spaces C(X) and C(Y).
LA - eng
KW - bound-2 isomorphism
UR - http://eudml.org/doc/216156
ER -

References

top
  1. [1] D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205-210. Zbl0141.31301
  2. [2] E. Behrends, M-structure and the Banach-Stone Theorem, Lecture Notes in Math. 736, Springer, 1979. Zbl0436.46013
  3. [3] Y. Benyamini, Near isometries in the class of L 1 -preduals, Israel J. Math. 20 (1975), 275-291. 
  4. [4] M. Cambern, A generalized Banach-Stone Theorem, Proc. Amer. Math. Soc. 17 (1966), 396-400. Zbl0156.36902
  5. [5] M. Cambern, On isomorphisms with small bounds, ibid. 18 (1967), 1062-1066. 
  6. [6] M. Cambern, On L 1 isomorphisms, ibid. 78 (1980), 227-229. 
  7. [7] M. Cambern, Isomorphisms of spaces of norm continuous functions, Pacific J. Math. 116 (1985), 243-254. Zbl0569.46018
  8. [8] M. Cambern and P. Greim, The bidual of C(X,E), Proc. Amer. Math. Soc. 85 (1982), 53-583. Zbl0487.46017
  9. [9] M. Cambern and P. Greim, The dual of a space of vector measures, Math. Z. 180 (1982), 373-378. Zbl0471.46016
  10. [10] H. B. Cohen, A bound-two isomorphism for C(X) Banach spaces, Proc. Amer. Math. Soc. 50 (1975), 215-217. Zbl0317.46025
  11. [11] H. B. Cohen, A second-dual method for C(X) isomorphism, J. Funct. Anal. 23 (1975), 107-118. Zbl0337.46029
  12. [12] C. H. Chu and H. B. Cohen, Isomorphisms of spaces of continuous affine functions, Pacific J. Math. 155 (1992), 71-85. Zbl0728.46011
  13. [13] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2, (1951), 151-182. 
  14. [14] H. Gordon, The maximal ideal space of a ring of measurable functions, Amer. J. Math. 88 (1966), 827-843. Zbl0156.36904
  15. [15] J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963), 38-43. Zbl0116.08304
  16. [16] K. Jarosz, Small isomorphisms of C(X,E) spaces, Pacific J. Math. 138 (1989), 295-315. Zbl0698.46033
  17. [17] S. Kakutani, Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math. 42 (1941), 523-537. Zbl0027.11102
  18. [18] J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. 72 (1952), 323-326. Zbl0046.12002
  19. [19] J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466. Zbl0085.09702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.