On local automorphisms and mappings that preserve idempotents
Studia Mathematica (1995)
- Volume: 113, Issue: 2, page 101-108
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. B. Beasley and N. J. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7-20. Zbl0718.15004
- [2] M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), 454-462. Zbl0769.16015
- [3] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496. Zbl0796.15001
- [4] G. H. Chan, M. H. Lim and K. K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80. Zbl0619.15003
- [5] P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289. Zbl0252.46086
- [6] M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105. Zbl0061.25301
- [7] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969. Zbl0232.16001
- [8] N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. Zbl0039.26402
- [9] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. Zbl0589.47003
- [10] R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509. Zbl0751.46041
- [11] D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Providence, R.I., 1990, 187-194. Zbl0713.47045
- [12] C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465.