On local automorphisms and mappings that preserve idempotents

Matej Brešar; Peter Šemrl

Studia Mathematica (1995)

  • Volume: 113, Issue: 2, page 101-108
  • ISSN: 0039-3223

Abstract

top
Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.

How to cite

top

Brešar, Matej, and Šemrl, Peter. "On local automorphisms and mappings that preserve idempotents." Studia Mathematica 113.2 (1995): 101-108. <http://eudml.org/doc/216163>.

@article{Brešar1995,
abstract = {Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.},
author = {Brešar, Matej, Šemrl, Peter},
journal = {Studia Mathematica},
keywords = {algebra of all bounded linear operators on a Hilbert space; antiautomorphisms; idempotent; local automorphism},
language = {eng},
number = {2},
pages = {101-108},
title = {On local automorphisms and mappings that preserve idempotents},
url = {http://eudml.org/doc/216163},
volume = {113},
year = {1995},
}

TY - JOUR
AU - Brešar, Matej
AU - Šemrl, Peter
TI - On local automorphisms and mappings that preserve idempotents
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 2
SP - 101
EP - 108
AB - Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.
LA - eng
KW - algebra of all bounded linear operators on a Hilbert space; antiautomorphisms; idempotent; local automorphism
UR - http://eudml.org/doc/216163
ER -

References

top
  1. [1] L. B. Beasley and N. J. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7-20. Zbl0718.15004
  2. [2] M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), 454-462. Zbl0769.16015
  3. [3] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496. Zbl0796.15001
  4. [4] G. H. Chan, M. H. Lim and K. K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80. Zbl0619.15003
  5. [5] P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289. Zbl0252.46086
  6. [6] M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105. Zbl0061.25301
  7. [7] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969. Zbl0232.16001
  8. [8] N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. Zbl0039.26402
  9. [9] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. Zbl0589.47003
  10. [10] R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509. Zbl0751.46041
  11. [11] D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Providence, R.I., 1990, 187-194. Zbl0713.47045
  12. [12] C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.