Linear preservers on ℬ(X)

Matej Brešar; Peter Šemrl

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 49-58
  • ISSN: 0137-6934

How to cite

top

Brešar, Matej, and Šemrl, Peter. "Linear preservers on ℬ(X)." Banach Center Publications 38.1 (1997): 49-58. <http://eudml.org/doc/208648>.

@article{Brešar1997,
author = {Brešar, Matej, Šemrl, Peter},
journal = {Banach Center Publications},
keywords = {bijective linear maps; preserve the spectrum; preserve the nilpotency; preserve the commutativity; preserve the spectral radius},
language = {eng},
number = {1},
pages = {49-58},
title = {Linear preservers on ℬ(X)},
url = {http://eudml.org/doc/208648},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Brešar, Matej
AU - Šemrl, Peter
TI - Linear preservers on ℬ(X)
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 49
EP - 58
LA - eng
KW - bijective linear maps; preserve the spectrum; preserve the nilpotency; preserve the commutativity; preserve the spectral radius
UR - http://eudml.org/doc/208648
ER -

References

top
  1. [1] A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), 1-129. 
  2. [2] B. Aupetit, A primer on spectral theory, Universitext, Springer, New York, 1991. 
  3. [3] B. Aupetit and H. du T. Mouton, Spectrum-preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100. Zbl0829.46039
  4. [4] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546. Zbl0791.16028
  5. [5] M. Brešar and C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), 695-708. Zbl0794.46045
  6. [6] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496. Zbl0796.15001
  7. [7] M. Brešar, P. Šemrl, Normal-preserving linear mappings, Canad. Math. Bull. 37 (1994), 306-309. Zbl0816.47018
  8. [8] M. Brešar, P. Šemrl, On local automorphisms and mappings that preserve idempotents, Studia Math. 113 (1995), 101-108. Zbl0835.47020
  9. [9] M. Brešar, P. Šemrl, Linear maps preserving the spectral radius, J. Funct. Anal. 142 (1996), 360-368. Zbl0873.47002
  10. [10] M. D. Choi, A. A. Jafarian and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227-241. Zbl0615.15004
  11. [11] H. A. Dye, On the geometry of projections in certain operator algebras, Ann. of Math. (2) 61 (1955), 73-89. Zbl0064.11002
  12. [12] G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss. Berlin (1897), 994-1015. Zbl28.0130.01
  13. [13] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976. 
  14. [14] I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, 1969. Zbl0232.16001
  15. [15] J. C. Hou, Rank preserving linear maps on B(X), Sci. China Ser. A 32 (1989), 929-940. Zbl0686.47030
  16. [16] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. Zbl0039.26402
  17. [17] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. Zbl0589.47003
  18. [18] I. Kaplansky, Algebraic and analytic aspects of operator algebras, Regional Conference Series in Mathematics 1, Amer. Math. Soc., Providence, 1970. Zbl0217.44902
  19. [19] C.-K. Li and N.-K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl. 162-164 (1992), 217-235. 
  20. [20] M. Marcus, Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847. Zbl0108.01104
  21. [21] W. S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. Zbl0175.03102
  22. [22] M. Omladič, On operators preserving commutativity, J. Funct. Anal. 66 (1986), 105-122. Zbl0587.47051
  23. [23] M. Omladič, On operators preserving the numerical range, Linear Algebra Appl. 134 (1990), 31-51. Zbl0716.47004
  24. [24] M. Omladič and P. Šemrl, Spectrum-preserving additive maps, ibid. 153 (1991), 67-72. 
  25. [25] M. Omladič, P. Šemrl, Additive mappings preserving operators of rank one, ibid. 182 (1993), 239-256. Zbl0803.47026
  26. [26] M. Omladič, P. Šemrl, Linear mappings that preserve potent operators, Proc. Amer. Math. Soc. 123 (1995), 1069-1074. Zbl0831.47026
  27. [27] C. Pearcy and D. Topping, Sums of small numbers of operators, Michigan Math. J. 14 (1967), 453-465. 
  28. [28] H. Radjavi and P. Rosenthal, Invariant subspaces, Ergeb. Math. Grenzgeb. 77, Springer, Berlin, 1973. 
  29. [29] B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416. Zbl0171.11503
  30. [30] P. Šemrl, Two characterizations of automorphisms on B(X), Studia Math. 105 (1993), 143-149. 
  31. [31] P. Šemrl, Linear maps that preserve the nilpotent operators, Acta Sci. Math. (Szeged) 61 (1995), 523-534. Zbl0843.47024
  32. [32] A. R. Sourour, Invertibility preserving linear maps on L(X), preprint. Zbl0843.47023
  33. [33] A. R. Sourour, The Gleason-Kahane-Żelazko theorem and its generalizations, Banach Center Publ. 30 (1994), 327-331. Zbl0813.47044
  34. [34] W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl. 14 (1976), 29-35. Zbl0329.15005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.