Linear preservers on ℬ(X)

Matej Brešar; Peter Šemrl

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 49-58
  • ISSN: 0137-6934

How to cite

top

Brešar, Matej, and Šemrl, Peter. "Linear preservers on ℬ(X)." Banach Center Publications 38.1 (1997): 49-58. <http://eudml.org/doc/208648>.

@article{Brešar1997,
author = {Brešar, Matej, Šemrl, Peter},
journal = {Banach Center Publications},
keywords = {bijective linear maps; preserve the spectrum; preserve the nilpotency; preserve the commutativity; preserve the spectral radius},
language = {eng},
number = {1},
pages = {49-58},
title = {Linear preservers on ℬ(X)},
url = {http://eudml.org/doc/208648},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Brešar, Matej
AU - Šemrl, Peter
TI - Linear preservers on ℬ(X)
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 49
EP - 58
LA - eng
KW - bijective linear maps; preserve the spectrum; preserve the nilpotency; preserve the commutativity; preserve the spectral radius
UR - http://eudml.org/doc/208648
ER -

References

top
  1. [1] A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), 1-129. 
  2. [2] B. Aupetit, A primer on spectral theory, Universitext, Springer, New York, 1991. 
  3. [3] B. Aupetit and H. du T. Mouton, Spectrum-preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100. Zbl0829.46039
  4. [4] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546. Zbl0791.16028
  5. [5] M. Brešar and C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), 695-708. Zbl0794.46045
  6. [6] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496. Zbl0796.15001
  7. [7] M. Brešar, P. Šemrl, Normal-preserving linear mappings, Canad. Math. Bull. 37 (1994), 306-309. Zbl0816.47018
  8. [8] M. Brešar, P. Šemrl, On local automorphisms and mappings that preserve idempotents, Studia Math. 113 (1995), 101-108. Zbl0835.47020
  9. [9] M. Brešar, P. Šemrl, Linear maps preserving the spectral radius, J. Funct. Anal. 142 (1996), 360-368. Zbl0873.47002
  10. [10] M. D. Choi, A. A. Jafarian and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227-241. Zbl0615.15004
  11. [11] H. A. Dye, On the geometry of projections in certain operator algebras, Ann. of Math. (2) 61 (1955), 73-89. Zbl0064.11002
  12. [12] G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss. Berlin (1897), 994-1015. Zbl28.0130.01
  13. [13] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976. 
  14. [14] I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, 1969. Zbl0232.16001
  15. [15] J. C. Hou, Rank preserving linear maps on B(X), Sci. China Ser. A 32 (1989), 929-940. Zbl0686.47030
  16. [16] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. Zbl0039.26402
  17. [17] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. Zbl0589.47003
  18. [18] I. Kaplansky, Algebraic and analytic aspects of operator algebras, Regional Conference Series in Mathematics 1, Amer. Math. Soc., Providence, 1970. Zbl0217.44902
  19. [19] C.-K. Li and N.-K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl. 162-164 (1992), 217-235. 
  20. [20] M. Marcus, Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847. Zbl0108.01104
  21. [21] W. S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. Zbl0175.03102
  22. [22] M. Omladič, On operators preserving commutativity, J. Funct. Anal. 66 (1986), 105-122. Zbl0587.47051
  23. [23] M. Omladič, On operators preserving the numerical range, Linear Algebra Appl. 134 (1990), 31-51. Zbl0716.47004
  24. [24] M. Omladič and P. Šemrl, Spectrum-preserving additive maps, ibid. 153 (1991), 67-72. 
  25. [25] M. Omladič, P. Šemrl, Additive mappings preserving operators of rank one, ibid. 182 (1993), 239-256. Zbl0803.47026
  26. [26] M. Omladič, P. Šemrl, Linear mappings that preserve potent operators, Proc. Amer. Math. Soc. 123 (1995), 1069-1074. Zbl0831.47026
  27. [27] C. Pearcy and D. Topping, Sums of small numbers of operators, Michigan Math. J. 14 (1967), 453-465. 
  28. [28] H. Radjavi and P. Rosenthal, Invariant subspaces, Ergeb. Math. Grenzgeb. 77, Springer, Berlin, 1973. 
  29. [29] B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416. Zbl0171.11503
  30. [30] P. Šemrl, Two characterizations of automorphisms on B(X), Studia Math. 105 (1993), 143-149. 
  31. [31] P. Šemrl, Linear maps that preserve the nilpotent operators, Acta Sci. Math. (Szeged) 61 (1995), 523-534. Zbl0843.47024
  32. [32] A. R. Sourour, Invertibility preserving linear maps on L(X), preprint. Zbl0843.47023
  33. [33] A. R. Sourour, The Gleason-Kahane-Żelazko theorem and its generalizations, Banach Center Publ. 30 (1994), 327-331. Zbl0813.47044
  34. [34] W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl. 14 (1976), 29-35. Zbl0329.15005

NotesEmbed ?

top

You must be logged in to post comments.