The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms

Wiesław Cupała

Studia Mathematica (1995)

  • Volume: 113, Issue: 2, page 109-125
  • ISSN: 0039-3223

Abstract

top
The theory of Markov processes and the analysis on Lie groups are used to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.

How to cite

top

Cupała, Wiesław. "The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms." Studia Mathematica 113.2 (1995): 109-125. <http://eudml.org/doc/216164>.

@article{Cupała1995,
abstract = {The theory of Markov processes and the analysis on Lie groups are used to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.},
author = {Cupała, Wiesław},
journal = {Studia Mathematica},
keywords = {eigenvalue asymptotics; Dirichlet form; Markov process; Lie group; Hunt process; Markov processes; Lie groups; eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials; Markovian semigroup},
language = {eng},
number = {2},
pages = {109-125},
title = {The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms},
url = {http://eudml.org/doc/216164},
volume = {113},
year = {1995},
}

TY - JOUR
AU - Cupała, Wiesław
TI - The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms
JO - Studia Mathematica
PY - 1995
VL - 113
IS - 2
SP - 109
EP - 125
AB - The theory of Markov processes and the analysis on Lie groups are used to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.
LA - eng
KW - eigenvalue asymptotics; Dirichlet form; Markov process; Lie group; Hunt process; Markov processes; Lie groups; eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials; Markovian semigroup
UR - http://eudml.org/doc/216164
ER -

References

top
  1. [1] K. L. Chung, Lectures from Markov Processes to Brownian Motion, Springer, 1982. Zbl0503.60073
  2. [2] W. Cupała, On the essential spectrum and eigenvalue asymptotics of certain Schrödinger operators, Studia Math. 96 (1990), 196-202. Zbl0716.35058
  3. [3] W. Cupała, On the eigenvalue asymptotics of certain Schrödinger operators, ibid. 105 (1993), 101-104. Zbl0811.35024
  4. [4] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. 106 (1977), 93-100. Zbl0362.47006
  5. [5] C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. Zbl0526.35080
  6. [6] C. L. Fefferman and D. H. Phong, On the asymptotic eigenvalue distribution of a pseudo-differential operator, Proc. Nat. Acad. Sci. U.S.A. 77 (1980), 5622-5625. Zbl0443.35082
  7. [7] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. Zbl0312.35026
  8. [8] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, 1980. Zbl0422.31007
  9. [9] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333-379. Zbl0294.43003
  10. [10] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 192-218. Zbl0164.13201
  11. [11] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, unpublished. Zbl0445.58029
  12. [12] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216. Zbl0008.11301
  13. [13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, 1979. Zbl0405.47007
  14. [14] G. V. Rosenblum, The distribution of the dicrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012-1015 (in Russian). 
  15. [15] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1977), 247-320. Zbl0346.35030
  16. [16] N. T. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240-260. Zbl0608.47047
  17. [17] N. T. Varopoulos, Analysis on Lie groups, ibid. 76 (1988), 346-410. Zbl0634.22008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.