On the eigenvalue asymptotics of certain Schrödinger operators

Wiesław Cupała

Studia Mathematica (1993)

  • Volume: 105, Issue: 1, page 101-104
  • ISSN: 0039-3223

Abstract

top
Subelliptic estimates on nilpotent Lie groups and the Cwikel-Lieb-Rosenblum inequality are used to estimate the number of eigenvalues for Schrödinger operators with polynomial potentials.

How to cite

top

Cupała, Wiesław. "On the eigenvalue asymptotics of certain Schrödinger operators." Studia Mathematica 105.1 (1993): 101-104. <http://eudml.org/doc/215978>.

@article{Cupała1993,
abstract = {Subelliptic estimates on nilpotent Lie groups and the Cwikel-Lieb-Rosenblum inequality are used to estimate the number of eigenvalues for Schrödinger operators with polynomial potentials.},
author = {Cupała, Wiesław},
journal = {Studia Mathematica},
keywords = {subelliptic estimates on nilpotent Lie groups; Cwikel-Lieb-Rosenblum inequality; Schrödinger operators with polynomial potentials},
language = {eng},
number = {1},
pages = {101-104},
title = {On the eigenvalue asymptotics of certain Schrödinger operators},
url = {http://eudml.org/doc/215978},
volume = {105},
year = {1993},
}

TY - JOUR
AU - Cupała, Wiesław
TI - On the eigenvalue asymptotics of certain Schrödinger operators
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 1
SP - 101
EP - 104
AB - Subelliptic estimates on nilpotent Lie groups and the Cwikel-Lieb-Rosenblum inequality are used to estimate the number of eigenvalues for Schrödinger operators with polynomial potentials.
LA - eng
KW - subelliptic estimates on nilpotent Lie groups; Cwikel-Lieb-Rosenblum inequality; Schrödinger operators with polynomial potentials
UR - http://eudml.org/doc/215978
ER -

References

top
  1. [1] W. Cupała, On the essential spectrum and eigenvalue asymptotics of certain Schrödinger operators, Studia Math. 96 (1990), 195-202. Zbl0716.35058
  2. [2] Ch. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. 
  3. [3] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. Zbl0312.35026
  4. [4] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216. Zbl0008.11301
  5. [5] B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979. Zbl0434.28013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.