# Singularities and normal forms of generic 2-distributions on 3-manifolds

Studia Mathematica (1995)

- Volume: 113, Issue: 3, page 223-248
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topJakubczyk, B., and Zhitomirskiĭ, M.. "Singularities and normal forms of generic 2-distributions on 3-manifolds." Studia Mathematica 113.3 (1995): 223-248. <http://eudml.org/doc/216172>.

@article{Jakubczyk1995,

abstract = {We give a complete classification of germs of generic 2-distributions on 3-manifolds. By a 2-distribution we mean either a module generated by two vector fields (at singular points its dimension decreases) or a Pfaff equation, i.e. a module generated by a differential 1-form (at singular points the dimension of its kernel increases).},

author = {Jakubczyk, B., Zhitomirskiĭ, M.},

journal = {Studia Mathematica},

keywords = {2-distributions; normal forms},

language = {eng},

number = {3},

pages = {223-248},

title = {Singularities and normal forms of generic 2-distributions on 3-manifolds},

url = {http://eudml.org/doc/216172},

volume = {113},

year = {1995},

}

TY - JOUR

AU - Jakubczyk, B.

AU - Zhitomirskiĭ, M.

TI - Singularities and normal forms of generic 2-distributions on 3-manifolds

JO - Studia Mathematica

PY - 1995

VL - 113

IS - 3

SP - 223

EP - 248

AB - We give a complete classification of germs of generic 2-distributions on 3-manifolds. By a 2-distribution we mean either a module generated by two vector fields (at singular points its dimension decreases) or a Pfaff equation, i.e. a module generated by a differential 1-form (at singular points the dimension of its kernel increases).

LA - eng

KW - 2-distributions; normal forms

UR - http://eudml.org/doc/216172

ER -

## References

top- [A] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978. Zbl0386.70001
- [AI] V. I. Arnold and Yu. S. Il'yashenko, Ordinary Differential Equations, in: Modern Problems in Mathematics, Dynamical Systems 1, Springer, Berlin 1985.
- [AVG] V. I. Arnold, A. N. Varchenko and S. M. Gusein-Zade, Singularities of Differentiable Maps, Vol. 1, Nauka, Moscow, 1982 (in Russian); English transl.: Birkhäuser, 1985.
- [B] G. R. Belitskiĭ, Smooth equivalence of germs of vector fields with one zero eigenvalue or a pair of purely imaginary eigenvalues, Funktsional. Anal. i Prilozhen. 20 (4) (1986), 1-8 (in Russian). Zbl0657.58027
- [GG] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer, Berlin, 1973. Zbl0294.58004
- [GT] M. Golubitsky and D. Tischler, On the local stability of differential forms, Trans. Amer. Math. Soc. 223 (1976), 205-221. Zbl0339.58003
- [JP] B. Jakubczyk and F. Przytycki, Singularities of k-tuples of vector fields, Dissertationes Math. 213 (1984). Zbl0565.58007
- [L] V. V. Lychagin, Local classification of first order nonlinear partial differential equations, Uspekhi Mat. Nauk 30 (1) (1975), 101-171 (in Russian).
- [M] J. Martinet, Sur les singularités des formes différentielles, Ann. Inst. Fourier (Grenoble) 20 (1) (1970), 95-178. Zbl0189.10001
- [MZ] P. Mormul and M. Zhitomirskiĭ, Modules of vector fields, differential forms and degenerations of differential systems, Trans. Amer. Math. Soc., to appear. Zbl0866.58003
- [P] F. Pelletier, Singularités d'ordre supérieur de 1-formes, 2-formes et équations de Pfaff, Publ. Math. IHES 61 (1985). Zbl0568.58001
- [R] R. Roussarie, Modules locaux de champs et de formes, Astérisque 30 (1975). Zbl0327.57017
- [Z1] M. Zhitomirskiĭ, Singularities and normal forms of odd-dimensional Pfaff equations, Funktsional. Anal. i Prilozhen. 23 (1) (1989), 70-71 (in Russian).
- [Z2] M. Zhitomirskiĭ, Typical Singularities of Differential 1-forms and Pfaffian Equations, Transl. Math. Monographs 113, Amer. Math. Soc., Providence, 1992.
- [Z3] M. Zhitomirskiĭ, Finitely determined 1-forms ω, ${\omega}_{0}\ne 0$, are exhausted by Darboux and Martinet models, Funktsional. Anal. i Prilozhen. 19 (1) (1985), 59-61 (in Russian).

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.