Local reduction theorems and invariants for singular contact structures
Bronislaw Jakubczyk[1]; Michail Zhitomirskii[2]
- [1] Polish Academy of Sciences, Institute of Mathematics, Sniadeckich 8, 00-950 Warsaw (Pologne)
- [2] Technion, Department of Mathematics, 32000 Haifa (Israël)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 1, page 237-295
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJakubczyk, Bronislaw, and Zhitomirskii, Michail. "Local reduction theorems and invariants for singular contact structures." Annales de l’institut Fourier 51.1 (2001): 237-295. <http://eudml.org/doc/115911>.
@article{Jakubczyk2001,
abstract = {A differential 1-form on a $(2k+1)$-dimensional manifolds $M$ defines a singular contact
structure if the set $S$ of points where the contact condition is not satisfied,
$S=\lbrace p\in M : (\omega \wedge (d\omega )^k(p)=0\rbrace $, is nowhere dense in $M$. Then
$S$ is a hypersurface with singularities and the restriction of $\omega $ to $S$ can be
defined. Our first theorem states that in the holomorphic, real-analytic, and smooth
categories the germ of Pfaffian equation $(\omega )$ generated by $\omega $ is determined,
up to a diffeomorphism, by its restriction to $S$, if we eliminate certain degenerated
singularities of $\omega $ (in the holomorphic case they form a set of infinite
codimension). We also define other invariants of local singular contact structures:
orientations, a line bundle, and a partial connection. We study the problem when these
invariants, together with the hypersurface $S$ and the restriction of the Pfaffian
equation $(\omega )$ to $S$, form a complete set of local invariants. Our results include
complete solutions to this problem in dimension 3 and in the case where $S$ has no
singularities.},
affiliation = {Polish Academy of Sciences, Institute of Mathematics, Sniadeckich 8, 00-950 Warsaw (Pologne); Technion, Department of Mathematics, 32000 Haifa (Israël)},
author = {Jakubczyk, Bronislaw, Zhitomirskii, Michail},
journal = {Annales de l’institut Fourier},
keywords = {contact structure; singularity; pfaffian equation; equivalence; local invariants; reduction theorems; homotopy method},
language = {eng},
number = {1},
pages = {237-295},
publisher = {Association des Annales de l'Institut Fourier},
title = {Local reduction theorems and invariants for singular contact structures},
url = {http://eudml.org/doc/115911},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Jakubczyk, Bronislaw
AU - Zhitomirskii, Michail
TI - Local reduction theorems and invariants for singular contact structures
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 237
EP - 295
AB - A differential 1-form on a $(2k+1)$-dimensional manifolds $M$ defines a singular contact
structure if the set $S$ of points where the contact condition is not satisfied,
$S=\lbrace p\in M : (\omega \wedge (d\omega )^k(p)=0\rbrace $, is nowhere dense in $M$. Then
$S$ is a hypersurface with singularities and the restriction of $\omega $ to $S$ can be
defined. Our first theorem states that in the holomorphic, real-analytic, and smooth
categories the germ of Pfaffian equation $(\omega )$ generated by $\omega $ is determined,
up to a diffeomorphism, by its restriction to $S$, if we eliminate certain degenerated
singularities of $\omega $ (in the holomorphic case they form a set of infinite
codimension). We also define other invariants of local singular contact structures:
orientations, a line bundle, and a partial connection. We study the problem when these
invariants, together with the hypersurface $S$ and the restriction of the Pfaffian
equation $(\omega )$ to $S$, form a complete set of local invariants. Our results include
complete solutions to this problem in dimension 3 and in the case where $S$ has no
singularities.
LA - eng
KW - contact structure; singularity; pfaffian equation; equivalence; local invariants; reduction theorems; homotopy method
UR - http://eudml.org/doc/115911
ER -
References
top- A. Agrachev, Methods of Control Theory in Nonholonomic Geometry, Proc. Int. Congress of Math. Zurich 1994 Vol. 2 (1995), 1473-1483, Birkhäuser, Basel Zbl0848.93012
- V.I. Arnold, A.B. Givental, Symplectic geometry, Vol. 4 (1990), Springer, Berlin Zbl0780.58016MR1042758
- V.I. Arnold, Yu. S. Ilyashenko, Ordinary differential equations, Vol. 1 (1988), Springer, Berlin Zbl0659.58012MR970794
- R.I. Bogdanov, Moduli of normal forms of singular points of vector fields on a plane, Functional Anal. Appl. 11 (1977), 57-58 Zbl0384.57015MR482804
- R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, P.A. Griffiths, Exterior Differential Systems, Vol. 18 (1991), Springer-Verlag Zbl0726.58002MR1083148
- R.L. Bryant, L. Hsu, Rigidity of integral curves of rank 2 distributions, Inventiones Math. 114 (1993), 435-461 Zbl0807.58007MR1240644
- S. Balcerzyk, T. Józefiak, Commutative Rings; Dimension, Multiplicity and Homological Methods, (1989), Polish Scientific Publishers, Warsaw Zbl0685.13002MR1084368
- D. Eisenbud, Commutative Algebra, (1994), Springer-Verlag Zbl0819.13001MR1322960
- B. Jakubczyk, F. Przytycki, Singularities of k-tuples of vector fields, Dissertationes Mathematicae, Warsaw 213 (1984), 1-64 Zbl0565.58007MR744876
- B. Jakubczyk, M. Zhitomirskii, Singularities and normal forms of generic 2-distributions on 3-manifolds, Studia Math. 113 (1995), 223-248 Zbl0829.58007MR1330209
- B. Jakubczyk, M. Zhitomirskii, Odd-dimensional Pfaffian equations; reduction to the hypersurface of singular points, Comptes Rendus Acad. Sci. Paris, Série I t. 325 (1997), 423-428 Zbl0889.58006MR1467099
- W. Liu, H. Sussmann, Shortest paths for sub-Riemannian metrics on rank 2 distributions, Mem. Amer. Math. Soc. 118 (1995) Zbl0843.53038
- S. Łojasiewicz, Introduction to Complex Analytic Geometry, (1991), Birkhäuser, Basel Zbl0747.32001
- B. Malgrange, Ideals of differentiable functions, (1966), Oxford University Press Zbl0177.17902MR212575
- J. Martinet, Sur les singularites des formes differentielles, Ann. Inst. Fourier 20 (1970), 95-178 Zbl0189.10001MR286119
- J. Martinet, A letter to M. Zhitomirskii, (1989)
- J. Martinet, J.-P. Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Ecole Norm. Sup. 16 (1983), 571-621 Zbl0534.34011MR740592
- R. Montgomery, A Survey on Singular Curves in Sub-Riemannian Geometry, J. Dynamical and Control Systems 1 (1995), 49-90 Zbl0941.53021MR1319057
- P. Mormul, M. Zhitomirskii, Modules of vector fields, differential forms and degenerations of differential systems, Israel J. of Mathematics 95 (1996), 411-428 Zbl0866.58003MR1418303
- R. Moussu, Sur l'existence d'intégrales premières pour un germe de forme de Pfaff, Ann. Inst. Fourier 26 (1976), 171-220 Zbl0328.58002MR415657
- F. Pelletier, Singularités d'ordre supérieur de 1-formes, 2-formes et équations de Pfaff, Publications Mathématiques IHES, Bures-sur-Yvette (1985), 129-169 Zbl0568.58001MR783350
- R. Roussarie, Modèles locaux de champs et de formes, Astérisque 30 (1975), 1-181 Zbl0327.57017MR440570
- J.M. Ruiz, The Basic Theory of Power Series, (1993), Vieveg, Wiesbaden MR1234937
- J.-C. Tougeron, Idéaux des fonctions différentiables, 71 (1972), Springer Zbl0251.58001MR440598
- A.M. Vinogradov, I.C. Krasilshchik, V.V. Lychagin, Introduction to Geometry of Nonlinear Differential Equations (in Russian), (1986), Nauka, Moscow Zbl0592.35002MR855844
- M. Zhitomirskii, Typical singularities of differential 1-forms and Pfaffian equations, Vol. 113 (1992), AMS, Providence Zbl0771.58001MR1195792
- M. Zhitomirskii, Singularities and normal forms of odd-dimensional Pfaff equations, Functional Anal. Applic. 23 (1989), 59-61 Zbl0687.58001MR998435
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.