Local reduction theorems and invariants for singular contact structures

Bronislaw Jakubczyk[1]; Michail Zhitomirskii[2]

  • [1] Polish Academy of Sciences, Institute of Mathematics, Sniadeckich 8, 00-950 Warsaw (Pologne)
  • [2] Technion, Department of Mathematics, 32000 Haifa (Israël)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 1, page 237-295
  • ISSN: 0373-0956

Abstract

top
A differential 1-form on a ( 2 k + 1 ) -dimensional manifolds M defines a singular contact structure if the set S of points where the contact condition is not satisfied, S = { p M : ( ω ( d ω ) k ( p ) = 0 } , is nowhere dense in M . Then S is a hypersurface with singularities and the restriction of ω to S can be defined. Our first theorem states that in the holomorphic, real-analytic, and smooth categories the germ of Pfaffian equation ( ω ) generated by ω is determined, up to a diffeomorphism, by its restriction to S , if we eliminate certain degenerated singularities of ω (in the holomorphic case they form a set of infinite codimension). We also define other invariants of local singular contact structures: orientations, a line bundle, and a partial connection. We study the problem when these invariants, together with the hypersurface S and the restriction of the Pfaffian equation ( ω ) to S , form a complete set of local invariants. Our results include complete solutions to this problem in dimension 3 and in the case where S has no singularities.

How to cite

top

Jakubczyk, Bronislaw, and Zhitomirskii, Michail. "Local reduction theorems and invariants for singular contact structures." Annales de l’institut Fourier 51.1 (2001): 237-295. <http://eudml.org/doc/115911>.

@article{Jakubczyk2001,
abstract = {A differential 1-form on a $(2k+1)$-dimensional manifolds $M$ defines a singular contact structure if the set $S$ of points where the contact condition is not satisfied, $S=\lbrace p\in M : (\omega \wedge (d\omega )^k(p)=0\rbrace $, is nowhere dense in $M$. Then $S$ is a hypersurface with singularities and the restriction of $\omega $ to $S$ can be defined. Our first theorem states that in the holomorphic, real-analytic, and smooth categories the germ of Pfaffian equation $(\omega )$ generated by $\omega $ is determined, up to a diffeomorphism, by its restriction to $S$, if we eliminate certain degenerated singularities of $\omega $ (in the holomorphic case they form a set of infinite codimension). We also define other invariants of local singular contact structures: orientations, a line bundle, and a partial connection. We study the problem when these invariants, together with the hypersurface $S$ and the restriction of the Pfaffian equation $(\omega )$ to $S$, form a complete set of local invariants. Our results include complete solutions to this problem in dimension 3 and in the case where $S$ has no singularities.},
affiliation = {Polish Academy of Sciences, Institute of Mathematics, Sniadeckich 8, 00-950 Warsaw (Pologne); Technion, Department of Mathematics, 32000 Haifa (Israël)},
author = {Jakubczyk, Bronislaw, Zhitomirskii, Michail},
journal = {Annales de l’institut Fourier},
keywords = {contact structure; singularity; pfaffian equation; equivalence; local invariants; reduction theorems; homotopy method},
language = {eng},
number = {1},
pages = {237-295},
publisher = {Association des Annales de l'Institut Fourier},
title = {Local reduction theorems and invariants for singular contact structures},
url = {http://eudml.org/doc/115911},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Jakubczyk, Bronislaw
AU - Zhitomirskii, Michail
TI - Local reduction theorems and invariants for singular contact structures
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 237
EP - 295
AB - A differential 1-form on a $(2k+1)$-dimensional manifolds $M$ defines a singular contact structure if the set $S$ of points where the contact condition is not satisfied, $S=\lbrace p\in M : (\omega \wedge (d\omega )^k(p)=0\rbrace $, is nowhere dense in $M$. Then $S$ is a hypersurface with singularities and the restriction of $\omega $ to $S$ can be defined. Our first theorem states that in the holomorphic, real-analytic, and smooth categories the germ of Pfaffian equation $(\omega )$ generated by $\omega $ is determined, up to a diffeomorphism, by its restriction to $S$, if we eliminate certain degenerated singularities of $\omega $ (in the holomorphic case they form a set of infinite codimension). We also define other invariants of local singular contact structures: orientations, a line bundle, and a partial connection. We study the problem when these invariants, together with the hypersurface $S$ and the restriction of the Pfaffian equation $(\omega )$ to $S$, form a complete set of local invariants. Our results include complete solutions to this problem in dimension 3 and in the case where $S$ has no singularities.
LA - eng
KW - contact structure; singularity; pfaffian equation; equivalence; local invariants; reduction theorems; homotopy method
UR - http://eudml.org/doc/115911
ER -

References

top
  1. A. Agrachev, Methods of Control Theory in Nonholonomic Geometry, Proc. Int. Congress of Math. Zurich 1994 Vol. 2 (1995), 1473-1483, Birkhäuser, Basel Zbl0848.93012
  2. V.I. Arnold, A.B. Givental, Symplectic geometry, Vol. 4 (1990), Springer, Berlin Zbl0780.58016MR1042758
  3. V.I. Arnold, Yu. S. Ilyashenko, Ordinary differential equations, Vol. 1 (1988), Springer, Berlin Zbl0659.58012MR970794
  4. R.I. Bogdanov, Moduli of C normal forms of singular points of vector fields on a plane, Functional Anal. Appl. 11 (1977), 57-58 Zbl0384.57015MR482804
  5. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, P.A. Griffiths, Exterior Differential Systems, Vol. 18 (1991), Springer-Verlag Zbl0726.58002MR1083148
  6. R.L. Bryant, L. Hsu, Rigidity of integral curves of rank 2 distributions, Inventiones Math. 114 (1993), 435-461 Zbl0807.58007MR1240644
  7. S. Balcerzyk, T. Józefiak, Commutative Rings; Dimension, Multiplicity and Homological Methods, (1989), Polish Scientific Publishers, Warsaw Zbl0685.13002MR1084368
  8. D. Eisenbud, Commutative Algebra, (1994), Springer-Verlag Zbl0819.13001MR1322960
  9. B. Jakubczyk, F. Przytycki, Singularities of k-tuples of vector fields, Dissertationes Mathematicae, Warsaw 213 (1984), 1-64 Zbl0565.58007MR744876
  10. B. Jakubczyk, M. Zhitomirskii, Singularities and normal forms of generic 2-distributions on 3-manifolds, Studia Math. 113 (1995), 223-248 Zbl0829.58007MR1330209
  11. B. Jakubczyk, M. Zhitomirskii, Odd-dimensional Pfaffian equations; reduction to the hypersurface of singular points, Comptes Rendus Acad. Sci. Paris, Série I t. 325 (1997), 423-428 Zbl0889.58006MR1467099
  12. W. Liu, H. Sussmann, Shortest paths for sub-Riemannian metrics on rank 2 distributions, Mem. Amer. Math. Soc. 118 (1995) Zbl0843.53038
  13. S. Łojasiewicz, Introduction to Complex Analytic Geometry, (1991), Birkhäuser, Basel Zbl0747.32001
  14. B. Malgrange, Ideals of differentiable functions, (1966), Oxford University Press Zbl0177.17902MR212575
  15. J. Martinet, Sur les singularites des formes differentielles, Ann. Inst. Fourier 20 (1970), 95-178 Zbl0189.10001MR286119
  16. J. Martinet, A letter to M. Zhitomirskii, (1989) 
  17. J. Martinet, J.-P. Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Ecole Norm. Sup. 16 (1983), 571-621 Zbl0534.34011MR740592
  18. R. Montgomery, A Survey on Singular Curves in Sub-Riemannian Geometry, J. Dynamical and Control Systems 1 (1995), 49-90 Zbl0941.53021MR1319057
  19. P. Mormul, M. Zhitomirskii, Modules of vector fields, differential forms and degenerations of differential systems, Israel J. of Mathematics 95 (1996), 411-428 Zbl0866.58003MR1418303
  20. R. Moussu, Sur l'existence d'intégrales premières pour un germe de forme de Pfaff, Ann. Inst. Fourier 26 (1976), 171-220 Zbl0328.58002MR415657
  21. F. Pelletier, Singularités d'ordre supérieur de 1-formes, 2-formes et équations de Pfaff, Publications Mathématiques IHES, Bures-sur-Yvette (1985), 129-169 Zbl0568.58001MR783350
  22. R. Roussarie, Modèles locaux de champs et de formes, Astérisque 30 (1975), 1-181 Zbl0327.57017MR440570
  23. J.M. Ruiz, The Basic Theory of Power Series, (1993), Vieveg, Wiesbaden MR1234937
  24. J.-C. Tougeron, Idéaux des fonctions différentiables, 71 (1972), Springer Zbl0251.58001MR440598
  25. A.M. Vinogradov, I.C. Krasilshchik, V.V. Lychagin, Introduction to Geometry of Nonlinear Differential Equations (in Russian), (1986), Nauka, Moscow Zbl0592.35002MR855844
  26. M. Zhitomirskii, Typical singularities of differential 1-forms and Pfaffian equations, Vol. 113 (1992), AMS, Providence Zbl0771.58001MR1195792
  27. M. Zhitomirskii, Singularities and normal forms of odd-dimensional Pfaff equations, Functional Anal. Applic. 23 (1989), 59-61 Zbl0687.58001MR998435

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.