Boundedness of certain oscillatory singular integrals
Studia Mathematica (1995)
- Volume: 114, Issue: 2, page 105-116
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topFan, Dashan, and Pan, Yibiao. "Boundedness of certain oscillatory singular integrals." Studia Mathematica 114.2 (1995): 105-116. <http://eudml.org/doc/216182>.
@article{Fan1995,
abstract = {We prove the $L^p$ and $H^1$ boundedness of oscillatory singular integral operators defined by Tf = p.v.Ω∗f, where $Ω(x) = e^\{iΦ(x)\}K(x)$, K(x) is a Calderón-Zygmund kernel, and Φ satisfies certain growth conditions.},
author = {Fan, Dashan, Pan, Yibiao},
journal = {Studia Mathematica},
keywords = {oscillatory singular integral operator; Calderón-Zygmund kernel; phase function; hypersingular integral operator; boundedness},
language = {eng},
number = {2},
pages = {105-116},
title = {Boundedness of certain oscillatory singular integrals},
url = {http://eudml.org/doc/216182},
volume = {114},
year = {1995},
}
TY - JOUR
AU - Fan, Dashan
AU - Pan, Yibiao
TI - Boundedness of certain oscillatory singular integrals
JO - Studia Mathematica
PY - 1995
VL - 114
IS - 2
SP - 105
EP - 116
AB - We prove the $L^p$ and $H^1$ boundedness of oscillatory singular integral operators defined by Tf = p.v.Ω∗f, where $Ω(x) = e^{iΦ(x)}K(x)$, K(x) is a Calderón-Zygmund kernel, and Φ satisfies certain growth conditions.
LA - eng
KW - oscillatory singular integral operator; Calderón-Zygmund kernel; phase function; hypersingular integral operator; boundedness
UR - http://eudml.org/doc/216182
ER -
References
top- [1] S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Math. Soc. 281 (1984), 77-107. Zbl0531.42005
- [2] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. Zbl0667.42007
- [3] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. Zbl0594.42007
- [4] R. Coifman, A real variable characterization of , Studia Math. 51 (1974), 269-274. Zbl0289.46037
- [5] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [6] D. Fan, An oscillating integral in the Besov space , submitted for publication.
- [7] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. Zbl0188.42601
- [8] C. Fefferman and E. M. Stein, spaces of several variables, ibid. 129 (1972), 137-193. Zbl0257.46078
- [9] Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320. Zbl0779.42007
- [10] W. B. Jurkat and G. Sampson, The complete solution to the mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. Zbl0507.47013
- [11] Y. Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207-220. Zbl0735.45010
- [12] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. Zbl0728.42013
- [13] Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces: II, Indiana Univ. Math. J. 41 (1992), 279-293. Zbl0779.42008
- [14] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157. Zbl0622.42011
- [15] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
- [16] G. Sampson, Oscillating kernels that map into , Ark. Mat. 18 (1981), 125-144. Zbl0473.42013
- [17] P. Sjölin, Convolution with oscillating kernels on spaces, J. London Math. Soc. 23 (1981), 442-454. Zbl0426.46034
- [18] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-55. Zbl0419.47020
- [19] M. Spivak, Calculus on Manifolds, Addison-Wesley, New York, N.Y., 1992.
- [20] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1986, pp. 307-355.
- [21] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. Zbl0821.42001
- [22] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0232.42007
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.