Boundedness of certain oscillatory singular integrals

Dashan Fan; Yibiao Pan

Studia Mathematica (1995)

  • Volume: 114, Issue: 2, page 105-116
  • ISSN: 0039-3223

Abstract

top
We prove the L p and H 1 boundedness of oscillatory singular integral operators defined by Tf = p.v.Ω∗f, where Ω ( x ) = e i Φ ( x ) K ( x ) , K(x) is a Calderón-Zygmund kernel, and Φ satisfies certain growth conditions.

How to cite

top

Fan, Dashan, and Pan, Yibiao. "Boundedness of certain oscillatory singular integrals." Studia Mathematica 114.2 (1995): 105-116. <http://eudml.org/doc/216182>.

@article{Fan1995,
abstract = {We prove the $L^p$ and $H^1$ boundedness of oscillatory singular integral operators defined by Tf = p.v.Ω∗f, where $Ω(x) = e^\{iΦ(x)\}K(x)$, K(x) is a Calderón-Zygmund kernel, and Φ satisfies certain growth conditions.},
author = {Fan, Dashan, Pan, Yibiao},
journal = {Studia Mathematica},
keywords = {oscillatory singular integral operator; Calderón-Zygmund kernel; phase function; hypersingular integral operator; boundedness},
language = {eng},
number = {2},
pages = {105-116},
title = {Boundedness of certain oscillatory singular integrals},
url = {http://eudml.org/doc/216182},
volume = {114},
year = {1995},
}

TY - JOUR
AU - Fan, Dashan
AU - Pan, Yibiao
TI - Boundedness of certain oscillatory singular integrals
JO - Studia Mathematica
PY - 1995
VL - 114
IS - 2
SP - 105
EP - 116
AB - We prove the $L^p$ and $H^1$ boundedness of oscillatory singular integral operators defined by Tf = p.v.Ω∗f, where $Ω(x) = e^{iΦ(x)}K(x)$, K(x) is a Calderón-Zygmund kernel, and Φ satisfies certain growth conditions.
LA - eng
KW - oscillatory singular integral operator; Calderón-Zygmund kernel; phase function; hypersingular integral operator; boundedness
UR - http://eudml.org/doc/216182
ER -

References

top
  1. [1] S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Math. Soc. 281 (1984), 77-107. Zbl0531.42005
  2. [2] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. Zbl0667.42007
  3. [3] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted L p estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. Zbl0594.42007
  4. [4] R. Coifman, A real variable characterization of H p , Studia Math. 51 (1974), 269-274. Zbl0289.46037
  5. [5] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
  6. [6] D. Fan, An oscillating integral in the Besov space B 1 , 0 0 ( n ) , submitted for publication. 
  7. [7] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. Zbl0188.42601
  8. [8] C. Fefferman and E. M. Stein, H p spaces of several variables, ibid. 129 (1972), 137-193. Zbl0257.46078
  9. [9] Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320. Zbl0779.42007
  10. [10] W. B. Jurkat and G. Sampson, The complete solution to the ( L p , L q ) mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. Zbl0507.47013
  11. [11] Y. Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207-220. Zbl0735.45010
  12. [12] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. Zbl0728.42013
  13. [13] Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces: II, Indiana Univ. Math. J. 41 (1992), 279-293. Zbl0779.42008
  14. [14] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157. Zbl0622.42011
  15. [15] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I, J. Funct. Anal. 73 (1987), 179-194. Zbl0622.42010
  16. [16] G. Sampson, Oscillating kernels that map H 1 into L 1 , Ark. Mat. 18 (1981), 125-144. Zbl0473.42013
  17. [17] P. Sjölin, Convolution with oscillating kernels on H p spaces, J. London Math. Soc. 23 (1981), 442-454. Zbl0426.46034
  18. [18] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-55. Zbl0419.47020
  19. [19] M. Spivak, Calculus on Manifolds, Addison-Wesley, New York, N.Y., 1992. 
  20. [20] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1986, pp. 307-355. 
  21. [21] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. Zbl0821.42001
  22. [22] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0232.42007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.