Local polynomials are polynomials
C. Fong; G. Lumer; E. Nordgren; H. Radjavi; P. Rosenthal
Studia Mathematica (1995)
- Volume: 115, Issue: 2, page 105-107
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topFong, C., et al. "Local polynomials are polynomials." Studia Mathematica 115.2 (1995): 105-107. <http://eudml.org/doc/216201>.
@article{Fong1995,
abstract = {We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.},
author = {Fong, C., Lumer, G., Nordgren, E., Radjavi, H., Rosenthal, P.},
journal = {Studia Mathematica},
keywords = {local polynomials; operator-valued function},
language = {eng},
number = {2},
pages = {105-107},
title = {Local polynomials are polynomials},
url = {http://eudml.org/doc/216201},
volume = {115},
year = {1995},
}
TY - JOUR
AU - Fong, C.
AU - Lumer, G.
AU - Nordgren, E.
AU - Radjavi, H.
AU - Rosenthal, P.
TI - Local polynomials are polynomials
JO - Studia Mathematica
PY - 1995
VL - 115
IS - 2
SP - 105
EP - 107
AB - We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.
LA - eng
KW - local polynomials; operator-valued function
UR - http://eudml.org/doc/216201
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.