# Local polynomials are polynomials

C. Fong; G. Lumer; E. Nordgren; H. Radjavi; P. Rosenthal

Studia Mathematica (1995)

- Volume: 115, Issue: 2, page 105-107
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topFong, C., et al. "Local polynomials are polynomials." Studia Mathematica 115.2 (1995): 105-107. <http://eudml.org/doc/216201>.

@article{Fong1995,

abstract = {We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.},

author = {Fong, C., Lumer, G., Nordgren, E., Radjavi, H., Rosenthal, P.},

journal = {Studia Mathematica},

keywords = {local polynomials; operator-valued function},

language = {eng},

number = {2},

pages = {105-107},

title = {Local polynomials are polynomials},

url = {http://eudml.org/doc/216201},

volume = {115},

year = {1995},

}

TY - JOUR

AU - Fong, C.

AU - Lumer, G.

AU - Nordgren, E.

AU - Radjavi, H.

AU - Rosenthal, P.

TI - Local polynomials are polynomials

JO - Studia Mathematica

PY - 1995

VL - 115

IS - 2

SP - 105

EP - 107

AB - We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.

LA - eng

KW - local polynomials; operator-valued function

UR - http://eudml.org/doc/216201

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.