On Kato non-singularity

Robin Harte

Studia Mathematica (1996)

  • Volume: 117, Issue: 2, page 107-114
  • ISSN: 0039-3223

Abstract

top
An exactness lemma offers a simplified account of the spectral properties of the "holomorphic" analogue of normal solvability.

How to cite

top

Harte, Robin. "On Kato non-singularity." Studia Mathematica 117.2 (1996): 107-114. <http://eudml.org/doc/216245>.

@article{Harte1996,
abstract = {An exactness lemma offers a simplified account of the spectral properties of the "holomorphic" analogue of normal solvability.},
author = {Harte, Robin},
journal = {Studia Mathematica},
keywords = {holomorphic analogue of normal solvability; exactness lemma; spectral properties},
language = {eng},
number = {2},
pages = {107-114},
title = {On Kato non-singularity},
url = {http://eudml.org/doc/216245},
volume = {117},
year = {1996},
}

TY - JOUR
AU - Harte, Robin
TI - On Kato non-singularity
JO - Studia Mathematica
PY - 1996
VL - 117
IS - 2
SP - 107
EP - 114
AB - An exactness lemma offers a simplified account of the spectral properties of the "holomorphic" analogue of normal solvability.
LA - eng
KW - holomorphic analogue of normal solvability; exactness lemma; spectral properties
UR - http://eudml.org/doc/216245
ER -

References

top
  1. [1] R. H. Bouldin, Closed range and relative regularity for products, J. Math. Anal. 61 (1977), 397-403. Zbl0367.47020
  2. [2] S. R. Caradus, Operator Theory of the Pseudoinverse, Queen's Papers in Pure and Appl. Math. 38, Queen's Univ., Kingston, Ont., 1974. 
  3. [3] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968. Zbl0189.44201
  4. [4] J. K. Finch, The single-valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. Zbl0315.47002
  5. [5] K. H. Förster, Über die Invarianz einiger Räume, die zum Operator T - λ A gehören, Arch. Math. (Basel) 17 (1966), 56-64. Zbl0127.07903
  6. [6] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. Zbl0148.12501
  7. [7] R. E. Harte, Invertibility and Singularity, Dekker, New York, 1988. 
  8. [8] R. E. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-801. 
  9. [9] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. Zbl0090.09003
  10. [10] K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), 127-135. Zbl0812.47031
  11. [11] K. B. Laursen and M. M. Neumann, Local spectral theory and spectral inclusions, Glasgow Math. J. 36 (1994), 331-343. Zbl0851.47002
  12. [12] W. Y. Lee, A generalization of the punctured neighborhood theorem, Proc. Amer. Math. Soc. 117 (1993), 107-109. Zbl0780.47004
  13. [13] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectrales, Glasgow Math. J. 29 (1987), 159-175. Zbl0657.47038
  14. [14] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. Zbl0694.47002
  15. [15] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631. 
  16. [16] M. Mbekhta, Local spectrum and generalized spectrum, ibid. 112 (1991), 457-463. Zbl0739.47002
  17. [17] M. Mbekhta et A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Publ. Inst. Rech. Math. Av. Lille 22 (1990), XII. 
  18. [18] V. Müller, On the regular spectrum, J. Operator Theory 31 (1995), 366-380. 
  19. [19] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209. Zbl0794.47003
  20. [20] P. Saphar, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. Zbl0139.08502
  21. [21] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489. 
  22. [22] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117 (1993), 715-719. Zbl0780.47019
  23. [23] C. Schmoeger, On a generalized punctured neighborhood theorem in L(X), ibid. 123 (1995), 1237-1240. Zbl0836.47002
  24. [24] T. Starr and T. West, A positive contribution to operator theory, Bord na Mona Bull. 5 (1938), 6. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.