On a converse inequality for maximal functions in Orlicz spaces

H. Kita

Studia Mathematica (1996)

  • Volume: 118, Issue: 1, page 1-10
  • ISSN: 0039-3223

Abstract

top
Let Φ ( t ) = ʃ 0 t a ( s ) d s and Ψ ( t ) = ʃ 0 t b ( s ) d s , where a(s) is a positive continuous function such that ʃ 1 a ( s ) / s d s = and b(s) is quasi-increasing and l i m s b ( s ) = . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants c 1 and s 0 such that ʃ 1 s a ( t ) / t d t c 1 b ( c 1 s ) for all s s 0 ; (jj) there exist positive constants c 2 and c 3 such that ʃ 0 2 π Ψ ( ( c 2 ) / ( | | ) | ( x ) | ) d x c 3 + c 3 ʃ 0 2 π Φ ( 1 / ( | | ) ) M f ( x ) d x for all L 1 ( ) .

How to cite

top

Kita, H.. "On a converse inequality for maximal functions in Orlicz spaces." Studia Mathematica 118.1 (1996): 1-10. <http://eudml.org/doc/216260>.

@article{Kita1996,
abstract = {Let $Φ(t) = ʃ_\{0\}^\{t\} a(s)ds$ and $Ψ(t) = ʃ_\{0\}^\{t\} b(s)ds$, where a(s) is a positive continuous function such that $ʃ_\{1\}^\{∞\} a(s)/s ds = ∞$ and b(s) is quasi-increasing and $lim_\{s→∞\}b(s) = ∞$. Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants $c_1$ and $s_\{0\}$ such that $ʃ_\{1\}^\{s\} a(t)/t dt ≥ c_\{1\}b(c_\{1\}s)$ for all $s ≥ s_\{0\}$; (jj) there exist positive constants $c_2$ and $c_3$ such that $ʃ_\{0\}^\{2π\} Ψ((c_2)/(|⨍|_\{\}) |⨍(x)|) dx ≤ c_3 + c_\{3\} ʃ_\{0\}^\{2π\} Φ(1/(|⨍|_\{\})) Mf(x) dx$ for all $⨍ ∈ L^\{1\}()$.},
author = {Kita, H.},
journal = {Studia Mathematica},
keywords = {Hardy-Littlewood maximal function; Orlicz space; inequality},
language = {eng},
number = {1},
pages = {1-10},
title = {On a converse inequality for maximal functions in Orlicz spaces},
url = {http://eudml.org/doc/216260},
volume = {118},
year = {1996},
}

TY - JOUR
AU - Kita, H.
TI - On a converse inequality for maximal functions in Orlicz spaces
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 1
SP - 1
EP - 10
AB - Let $Φ(t) = ʃ_{0}^{t} a(s)ds$ and $Ψ(t) = ʃ_{0}^{t} b(s)ds$, where a(s) is a positive continuous function such that $ʃ_{1}^{∞} a(s)/s ds = ∞$ and b(s) is quasi-increasing and $lim_{s→∞}b(s) = ∞$. Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants $c_1$ and $s_{0}$ such that $ʃ_{1}^{s} a(t)/t dt ≥ c_{1}b(c_{1}s)$ for all $s ≥ s_{0}$; (jj) there exist positive constants $c_2$ and $c_3$ such that $ʃ_{0}^{2π} Ψ((c_2)/(|⨍|_{}) |⨍(x)|) dx ≤ c_3 + c_{3} ʃ_{0}^{2π} Φ(1/(|⨍|_{})) Mf(x) dx$ for all $⨍ ∈ L^{1}()$.
LA - eng
KW - Hardy-Littlewood maximal function; Orlicz space; inequality
UR - http://eudml.org/doc/216260
ER -

References

top
  1. [1] M. de Guzmán, Differentiation of Integrals in n , Lecture Notes in Math. 481, Springer, Berlin, 1975. 
  2. [2] H. Kita, On maximal functions in Orlicz spaces, submitted. Zbl0864.42007
  3. [3] H. Kita and K. Yoneda, A treatment of Orlicz spaces as a ranked space, Math. Japon. 37 (1992), 775-802. Zbl0766.46008
  4. [4] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Sci., 1991. Zbl0751.46021
  5. [5] G. Moscariello, On the integrability of the Jacobian in Orlicz spaces, Math. Japon. 40 (1994), 323-329. Zbl0805.46026
  6. [6] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, 1991. 
  7. [7] E. M. Stein, Note on the class L log L, Studia Math. 31 (1969), 305-310. Zbl0182.47803
  8. [8] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1985. 
  9. [9] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.