Optimal integrability of the Jacobian of orientation preserving maps

Andrea Cianchi

Bollettino dell'Unione Matematica Italiana (1999)

  • Volume: 2-B, Issue: 3, page 619-628
  • ISSN: 0392-4041

How to cite

top

Cianchi, Andrea. "Optimal integrability of the Jacobian of orientation preserving maps." Bollettino dell'Unione Matematica Italiana 2-B.3 (1999): 619-628. <http://eudml.org/doc/194757>.

@article{Cianchi1999,
author = {Cianchi, Andrea},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {rearrangement invariant space; Jacobian of an orientation preserving map; integrability},
language = {eng},
month = {10},
number = {3},
pages = {619-628},
publisher = {Unione Matematica Italiana},
title = {Optimal integrability of the Jacobian of orientation preserving maps},
url = {http://eudml.org/doc/194757},
volume = {2-B},
year = {1999},
}

TY - JOUR
AU - Cianchi, Andrea
TI - Optimal integrability of the Jacobian of orientation preserving maps
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/10//
PB - Unione Matematica Italiana
VL - 2-B
IS - 3
SP - 619
EP - 628
LA - eng
KW - rearrangement invariant space; Jacobian of an orientation preserving map; integrability
UR - http://eudml.org/doc/194757
ER -

References

top
  1. ARIÑO, M. A.- MUCKENHOUPT, B., Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc., 320 (1990), 727-735. Zbl0716.42016MR989570
  2. BAGBY, R. J.- PARSONS, J. D., Orlicz spaces and rearranged maximal functions, Math. Nachr., 132 (1987), 15-27. Zbl0662.46031MR910041
  3. BENNETT, C.- SHARPLEY, R., Interpolation of Operators, Academic Press, Boston (1988). Zbl0647.46057MR928802
  4. BREZIS, H.- FUSCO, N.- SBORDONE, C., Integrability for the Jacobian of orientation preserving mappings, J. Funct. Anal., 115 (1993), 425-431. Zbl0847.26012MR1234399
  5. BUTZER, P. L.- FEHÉR, F., Generalized Hardy and Hardy-Littlewood inequalities in rearrangement-invariant spaces, Comment. Math. Prace Mat., Tomus Specialis in Honorum Ladislai Orlicz (1978), 41-64. Zbl0385.26013MR504152
  6. CARRO, M. J.- GARCÍA DEL AMO, A.- SORIA, J., Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc., 124 (1996), 849-857. Zbl0853.42016MR1307501
  7. CIANCHI, A., Hardy inequalities in Orlicz spaces, Trans. Amer. Math. Soc., to appear. Zbl0920.46021MR1433113
  8. GRECO, L., Sharp results on integrability of the Jacobian, preprint Univ. Napoli. 
  9. GRECO, L.- IWANIEC, T., New inequalities for the Jacobian, Ann. Inst. Poincaré, Analyse non linéaire, 11 (1994), 17-35. Zbl0848.58051MR1259100
  10. GRECO, L.- IWANIEC, T.- MOSCARIELLO, G., Limits of the improved integrability of volume forms, Indiana Univ. Math. J., 44 (1995), 305-339. Zbl0855.42009MR1355401
  11. IWANIEC, T.- SBORDONE, C., On the integrability of the Jacobian under minimal hypotheses, Arch. Rat. Mech. Anal., 119 (1992), 129-143. Zbl0766.46016MR1176362
  12. KITA, H., On maximal functions in Orlicz spaces, Proc. Amer. Math. Soc., 124 (1996), 3019-3025. Zbl0862.42014MR1376993
  13. KITA, H., On a converse inequality for maximal functions in Orlicz spaces, Studia Math., 118 (1996), 1-10. Zbl0845.42008MR1373619
  14. LORENTZ, G. G., Relations between function spaces, Proc. Amer. Math. Soc., 12 (1961), 127-132. Zbl0124.31704MR123182
  15. MILMAN, M., Inequalities for Jacobians: interpolation techniques, Rev. Colombiana Mat., 27 (1993), 67-81. Zbl0830.46024MR1252243
  16. MONTGOMERY-SMITH, S. J., Comparison of Orlicz-Lorentz spaces, Studia Math., 103 (1992), 161-189. Zbl0814.46023MR1199324
  17. MONTGOMERY-SMITH, S. J., Boyd indices of Orlicz-Lorentz spaces, in Function spaces (K. JAROSZ ed.), Marcel Dekker, New York (1995), 321-334. Zbl0838.46024MR1352239
  18. MOSCARIELLO, G., On the integrability of the Jacobian in Orlicz spaces, Math. Japonica, 40 (1992), 323-329. Zbl0805.46026MR1297249
  19. MÜLLER, S., Higher integrability of determinants and weak convergence in L 1 , J. reine angew. Math., 412 (1990), 20-34. Zbl0713.49004MR1078998
  20. SAWYER, E. T., Boundedness of classical operators in classical Lorentz spaces, Studia Math., 96 (1990), 145-158. Zbl0705.42014MR1052631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.