A note on the Ehrhard inequality
Studia Mathematica (1996)
- Volume: 118, Issue: 2, page 169-174
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLatała, Rafał. "A note on the Ehrhard inequality." Studia Mathematica 118.2 (1996): 169-174. <http://eudml.org/doc/216271>.
@article{Latała1996,
abstract = {We prove that for λ ∈ [0,1] and A, B two Borel sets in $ℝ^n$ with A convex, $Φ^\{-1\}(γ_n(λA + (1-λ)B)) ≥ λΦ^\{-1\}(γ_n(A)) + (1-λ)Φ^\{-1\}(γ_n(B))$, where $γ_n$ is the canonical gaussian measure in $ℝ^n$ and $Φ^\{-1\}$ is the inverse of the gaussian distribution function.},
author = {Latała, Rafał},
journal = {Studia Mathematica},
keywords = {inverse of the Gaussian distribution function},
language = {eng},
number = {2},
pages = {169-174},
title = {A note on the Ehrhard inequality},
url = {http://eudml.org/doc/216271},
volume = {118},
year = {1996},
}
TY - JOUR
AU - Latała, Rafał
TI - A note on the Ehrhard inequality
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 2
SP - 169
EP - 174
AB - We prove that for λ ∈ [0,1] and A, B two Borel sets in $ℝ^n$ with A convex, $Φ^{-1}(γ_n(λA + (1-λ)B)) ≥ λΦ^{-1}(γ_n(A)) + (1-λ)Φ^{-1}(γ_n(B))$, where $γ_n$ is the canonical gaussian measure in $ℝ^n$ and $Φ^{-1}$ is the inverse of the gaussian distribution function.
LA - eng
KW - inverse of the Gaussian distribution function
UR - http://eudml.org/doc/216271
ER -
References
top- [1] A. Ehrhard, Symétrisation dans l'espace de Gauss, Math. Scand. 53 (1983), 281-301. Zbl0542.60003
- [2] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.